peptones has been researched along with n-hexadecane* in 2 studies
2 other study(ies) available for peptones and n-hexadecane
Article | Year |
---|---|
Dimorphism and hydrocarbon metabolism in Yarrowia lipolytica var. indica.
Yarrowia lipolytica is able to metabolize high Mr hydrophobic natural compounds such as fatty acids and hydrocarbons. Characteristically, strains of Y. lipolytica can grow as populations with variable proportions of yeast and filamentous forms. In the present study, we describe the dimorphic characteristics of a variant designated as Y. lipolytica var. indica isolated from petroleum contaminated sea water and the effect of cell morphology on hydrocarbon metabolism. The variant behaved as a yeast monomorphic strain, under conditions at which terrestrial Y. lipolytica strain W29 and its derived strains, grow as almost uniform populations of mycelial cells. Using organic nitrogen sources and N-acetylglucosamine as carbon source, var. indica was able to form mycelial cells, the proportion of which increased when incubated under semi-anaerobic conditions. The cell surface characteristics of var. indica and W29 were found to be different with respect to contact angle and percent hydrophobicity. For instance, percent hydrophobicity of var. indica was 89.93 ± 1.95 while that of W29 was 70.78 ± 1.1. Furthermore, while all tested strains metabolize hydrocarbons, only var. indica was able to use it as a carbon source. Yeast cells of var. indica metabolized hexadecane with higher efficiency than the mycelial form, whereas the mycelial form of the terrestrial strain metabolized the hydrocarbon more efficiently, as occurred with the mycelial monomorphic mutant AC11, compared to the yeast monomorphic mutant AC1. Topics: Alkanes; Amino Acids; Ammonium Sulfate; Culture Media; Fatty Acids; Genes, Fungal; Glutamine; Hydrophobic and Hydrophilic Interactions; Mycelium; Peptones; Petroleum; Petroleum Pollution; Polymorphism, Restriction Fragment Length; Seawater; Water Microbiology; Yarrowia | 2014 |
Effects of growth conditions and NAPL presence on transport of Pseudomonas saccharophilia P15 through porous media.
Extensive research has been done to characterize transport of bacteria in porous media; however, little is understood on how the presence of non-aqueous phase liquids (NAPLs) coupled with the growth state and carbon source of bacteria affect bacterial transport. The objective of this research is to quantify the bacterial adhesion of Pseudomonas saccharophilia P15 (P15), which is known to biodegrade polycyclic aromatic hydrocarbons (PAH) and to interact with coal tars, within a NAPL-water-mineral system. Through a series of short-pulse column experiments, the transport and deposition of P15 in porous media (quartz sand) as a function of growth state and carbon sources (peptone and naphthalene), and in the presence and absence of residual NAPL (hexadecane), is measured and evaluated. Coating 20% of the quartz grain with hexadecane as a model NAPL increased the retention of P15 by as much as a factor of 26 as compared to the retention exhibited in quartz sand with no NAPL present. P15 grown on peptone and in the late exponential growth state exhibited a greater amount of deposition within the hexadecane column than when it was grown on naphthalene or was in early exponential growth phase. During early growth stage P15 grown on naphthalene adhered stronger to the porous media compared to when grown on peptone. Results were compared with results of MATH assays, where P15 partitioning to hexadecane was evaluated as a function of carbon source and growth state. Topics: Alkanes; Bacterial Adhesion; Naphthalenes; Peptones; Porosity; Pseudomonas | 2010 |