pepstatin has been researched along with aloxistatin* in 13 studies
13 other study(ies) available for pepstatin and aloxistatin
Article | Year |
---|---|
Menadione-induced apoptosis in U937 cells involves Bid cleavage and stefin B degradation.
Earlier studies showed that the oxidant menadione (MD) induces apoptosis in certain cells and also has anticancer effects. Most of these studies emphasized the role of the mitochondria in this process. However, the engagement of other organelles is less known. Particularly, the role of lysosomes and their proteolytic system, which participates in apoptotic cell death, is still unclear. The aim of this study was to investigate the role of lysosomal cathepsins on molecular signaling in MD-induced apoptosis in U937 cells. MD treatment induced translocation of cysteine cathepsins B, C, and S, and aspartic cathepsin D. Once in the cytosol, some cathepsins cleaved the proapoptotic molecule, Bid, in a process that was completely prevented by E64d, a general inhibitor of cysteine cathepsins, and partially prevented by the pancaspase inhibitor, z-VAD-fmk. Upon loss of the mitochondrial membrane potential, apoptosome activation led to caspase-9 processing, activation of caspase-3-like caspases, and poly (ADP-ribose) polymerase cleavage. Notably, the endogenous protein inhibitor, stefin B, was degraded by cathepsin D and caspases. This process was prevented by z-VAD-fmk, and partially by pepstatin A-penetratin. These findings suggest that the cleaved Bid protein acts as an amplifier of apoptotic signaling through mitochondria, thus enhancing the activity of cysteine cathepsins following stefin B degradation. Topics: Amino Acid Chloromethyl Ketones; Antineoplastic Agents; Apoptosis; Apoptosomes; BH3 Interacting Domain Death Agonist Protein; Caspase 3; Caspase 9; Cathepsin B; Cathepsin C; Cathepsin D; Cathepsins; Cystatin B; Gene Expression Regulation, Neoplastic; Humans; Leucine; Lysosomes; Membrane Potential, Mitochondrial; Mitochondria; Pepstatins; Poly(ADP-ribose) Polymerases; Protease Inhibitors; Proteolysis; Signal Transduction; U937 Cells; Vitamin K 3 | 2019 |
Autophagy inhibitors reduce avian-reovirus-mediated apoptosis in cultured cells and in chicken embryos.
Avian reovirus (ARV)-induced apoptosis contributes to the pathogenesis of reovirus in infected chickens. However, methods for effectively reducing ARV-triggered apoptosis remain to be explored. Here, we show that pretreatment with chloroquine (CQ) or E64d plus pepstatin A decreases ARV-mediated apoptosis in chicken DF-1 cells. By acting as autophagy inhibitors, CQ and E64d plus pepstatin A increase microtubule-associated protein 1 light chain 3-II (LC3II) accumulation in ARV-infected cells, which results in decreased ARV protein synthesis and virus yield and thereby contributes to the reduction of apoptosis. Furthermore, ARV-mediated apoptosis in the bursa, heart and intestines of chicken embryos is attenuated by CQ and E64d plus pepstatin A treatment. Importantly, treatment with these autophagy inhibitors increases the survival of infected chicken embryos. Together, our data suggest that pharmacological inhibition of autophagy might represent a novel strategy for reducing ARV-mediated apoptosis. Topics: Animals; Apoptosis; Autophagy; Chick Embryo; Chickens; Chloroquine; Leucine; Orthoreovirus, Avian; Pepstatins; Poultry Diseases; Reoviridae Infections | 2015 |
Quantitative analysis in LC3-II protein in vitro maturation of porcine oocyte.
Microtubule-associated protein light chain 3 (LC3)-II is a marker of autophagosome. In this study, LC3-II expression was used to identify autophagy, during the in vitro maturation of porcine oocytes. In a time-course experiment, cumulus-oocyte complexes (COCs) were cultured in NCSU23 medium for 0 h, 14 h, 28 h or 42 h. The cumulus cells were removed and denuded oocytes were processed for western blotting or immunostaining. Western blotting showed that the LC3-II levels changed over time, with maximum levels observed at 14 h and minimum levels at 42 h. Immunostaining of LC3 showed the signals with dot shapes and ring shapes in oocytes at every group that probably represent autophagosomes. To ascertain whether autophagic induction and degradation were occurring, we treated the cultures with autophagic inhibitors. Lysosomal protease inhibitor E64d and pepstatin A increased the LC3-II levels and wortmannin, inhibitor of autophagic induction, decreased the LC3-II levels. Western blotting and immunostaining demonstrated that LC3-II is present in porcine oocytes cultured in vitro. The decreased LC3-II levels after wortmannin treatment suggest that it is newly generated in porcine oocytes, a phenomenon that represents autophagic induction. Furthermore, increased LC3-II levels after E64d and pepstatin A addition imply that LC3-II is degraded by lysosomal proteases, an indication of autophagic degradation. Our results suggest that autophagy, which is a dynamic process whereby autophagosomes are newly generated and subsequently degraded, is probably occurring in porcine oocytes during in vitro maturation. Topics: Animals; Autophagy; Blotting, Western; Cells, Cultured; Cumulus Cells; Female; In Vitro Oocyte Maturation Techniques; Leucine; Microtubule-Associated Proteins; Oocytes; Pepstatins; Swine | 2014 |
Excitotoxic glutamate insults block autophagic flux in hippocampal neurons.
Excitotoxic insults such as cerebral ischemia are thought to enhance neuronal autophagy, which is then thought to promote neuronal cell death. Excitotoxic insults indeed increase autophagy markers. Notably, however, autophagy markers can be increased either by autophagy induction (as this enhances their production) or by late-stage autophagy inhibition (as this prevents their degradation during autophagic flux). By comparing each condition with and without protease inhibitors that prevent autophagic degradation of the autophagy markers, the results of this study show that excitotoxic glutamate increases autophagy markers by a late-stage block of autophagy. Initially, this study set out to test if the CaMKII inhibitor tatCN21 mediates its post-insult neuroprotection by regulating autophagy. While tatCN21 partially inhibited basal autophagy in hippocampal neurons, it had no effects on the already blocked autophagy after excitotoxic glutamate insults, indicating that autophagy inhibition is not its neuroprotective mechanism. Additionally, while the autophagy inhibitor chloroquine had no effect, significant neuroprotection was seen instead with two drugs that enhance autophagy induction by different mechanisms, rapamycin (mTOR-dependent) and trehalose (mTOR-independent). This suggests that therapeutic approaches should seek to enhance rather than inhibit autophagy, not only in neurodegenerative diseases (where such approach is widely accepted) but also after acute excitotoxic insults. Together, these findings significantly reshape the current view on the mutual cross-regulation of autophagy and excitotoxicity. Topics: Animals; Animals, Newborn; Autophagy; Cells, Cultured; Excitatory Amino Acid Agonists; Glutamic Acid; Heat-Shock Proteins; Hippocampus; Leucine; Microtubule-Associated Proteins; Neurons; Pepstatins; Protease Inhibitors; Rats; Sequestosome-1 Protein; Statistics, Nonparametric | 2014 |
Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release.
Colorectal carcinoma (CRC) is one of the most common causes of cancer-related mortality. Short-chain fatty acids secreted by dietary propionibacteria from the intestine, such as acetate, induce apoptosis in CRC cells and may therefore be relevant in CRC prevention and therapy. We previously reported that acetic acid-induced apoptosis in Saccharomyces cerevisiae cells involves partial vacuole permeabilization and release of Pep4p, the yeast cathepsin D (CatD), which has a protective role in this process. In cancer cells, lysosomes have emerged as key players in apoptosis through selective lysosomal membrane permeabilization (LMP) and release of cathepsins. However, the role of CatD in CRC survival is controversial and has not been assessed in response to acetate. We aimed to ascertain whether LMP and CatD are involved in acetate-induced apoptosis in CRC cells. We showed that acetate per se inhibits proliferation and induces apoptosis. More importantly, we uncovered that acetate triggers LMP and CatD release to the cytosol. Pepstatin A (a CatD inhibitor) but not E64d (a cathepsin B and L inhibitor) increased acetate-induced apoptosis of CRC cells, suggesting that CatD has a protective role in this process. Our data indicate that acetate induces LMP and subsequent release of CatD in CRC cells undergoing apoptosis, and suggest exploiting novel strategies using acetate as a prevention/therapeutic agent in CRC, through simultaneous treatment with CatD inhibitors. Topics: Acetic Acid; Apoptosis; Cathepsin B; Cathepsin D; Cathepsin L; Cell Line, Tumor; Cell Membrane Permeability; Colorectal Neoplasms; Humans; Hydrogen-Ion Concentration; Leucine; Lysosomes; Pepstatins | 2013 |
M-opsin protein degradation is inhibited by MG-132 in Rpe65⁻/⁻ retinal explant culture.
The 65 kDa retinal pigment epithelium-specific protein, RPE65, is an essential enzyme for 11-cis-retinal synthesis in the eye. Mutations of the RPE65 gene in humans result in severe vision loss, and Rpe65(-/-) mice show early cone photoreceptor degeneration. We used an explant culture system to evaluate whether posttranslational downregulation of M-opsin protein in Rpe65(-/-) mice is caused by proteolytic degradation.. The eyes of three-week-old Rpe65(-/-) mice were incubated in culture medium. Western blot analysis was used to evaluate the level of M-opsin protein, and immunofluorescence was used for protein localization. The transcriptional level of M-opsin was evaluated with real-time reverse-transcriptase-PCR.. Degradation of the M-opsin protein in Rpe65(-/-) mouse retina was inhibited by the proteasome inhibitor MG-132 but not by the lysosomal inhibitor pepstatin A and E64d. 9-cis-retinal, used as an analog of 11-cis-retinal, increased M-opsin protein but did not increase M-opsin mRNA. Moreover, 9-cis-retinal did not change the transcriptional levels of photoreceptor specific genes.. Our data suggest that M-opsin protein was degraded through a proteasome pathway and that M-opsin degradation was suppressed with 9-cis-retinal treatment in Rpe65(-/-) mice to some extent. Topics: Animals; cis-trans-Isomerases; Cone Opsins; Cysteine Proteinase Inhibitors; Diterpenes; Eye; Leucine; Leupeptins; Lysosomes; Mice; Mice, Knockout; Organ Culture Techniques; Pepstatins; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Proteolysis; Real-Time Polymerase Chain Reaction; Retinaldehyde; Transcription, Genetic | 2012 |
The miR-290-295 cluster suppresses autophagic cell death of melanoma cells.
We compared the expression levels of 307 miRNAs in six different B16F1 melanoma cell lines of differing malignant properties and found that the miR-290-295 cluster showed a strong upregulation in the more malignant B16F1 daughter cell lines. Its overexpression in B16F1 cells had no major effects on cell proliferation, migration or anchorage-independent growth, but conferred resistance to glucose starvation. This was mediated by miR-290-295-induced downregulation of several essential autophagy genes, including Atg7 and ULK1, which resulted in inhibition of autophagic cell death induced by glucose starvation. Similar effects were observed after knockdown of Atg7 or ULK1 in B16F1 melanoma cells, and after treatment with two chemical inhibitors of autophagy. Together, these results indicate that autophagy mediates cell death of melanoma cells under chronic nutrient deprivation, and they reveal an unanticipated role of the miR-290-295 cluster in conferring a survival advantage to melanoma cells by inhibiting autophagic cell death. Topics: 3' Untranslated Regions; Animals; Autophagy; Autophagy-Related Protein 7; Autophagy-Related Protein-1 Homolog; Cell Line, Tumor; Down-Regulation; Leucine; Melanoma; Mice; MicroRNAs; Microtubule-Associated Proteins; Multigene Family; Pepstatins; Protein Serine-Threonine Kinases; Sirolimus; Starvation | 2012 |
Regulation of cathepsin G reduces the activation of proinsulin-reactive T cells from type 1 diabetes patients.
Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D). Self-proteins can be processed by cathepsins (Cats) within endocytic compartments and loaded to major histocompatibility complex (MHC) class II molecules for CD4(+) T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC) in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1)-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC) from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells. Topics: Blotting, Western; Carrier Proteins; Cathepsin G; Cell-Penetrating Peptides; Cells, Cultured; Diabetes Mellitus, Type 1; Enzyme-Linked Immunosorbent Assay; Humans; Leucine; Pepstatins; Polymerase Chain Reaction; Proinsulin; T-Lymphocytes | 2011 |
ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation.
Expanded polyglutamine 72 repeat (polyQ72) aggregates induce endoplasmic reticulum (ER) stress-mediated cell death with caspase-12 activation and vesicular formation (autophagy). We examined this relationship and the molecular mechanism of autophagy formation. Rapamycin, a stimulator of autophagy, inhibited the polyQ72-induced cell death with caspase-12 activation. PolyQ72, but not polyQ11, stimulated Atg5-Atg12-Atg16 complex-dependent microtubule-associated protein 1 (MAP1) light chain 3 (LC3) conversion from LC3-I to -II, which plays a key role in autophagy. The eucaryotic translation initiation factor 2 alpha (eIF2alpha) A/A mutation, a knock-in to replace a phosphorylatable Ser51 with Ala51, and dominant-negative PERK inhibited polyQ72-induced LC3 conversion. PolyQ72 as well as ER stress stimulators upregulated Atg12 mRNA and proteins via eIF2alpha phosphorylation. Furthermore, Atg5 deficiency as well as the eIF2alpha A/A mutation increased the number of cells showing polyQ72 aggregates and polyQ72-induced caspase-12 activation. Thus, autophagy formation is a cellular defense mechanism against polyQ72-induced ER-stress-mediated cell death by degrading polyQ72 aggregates, with PERK/eIF2alpha phosphorylation being involved in polyQ72-induced LC3 conversion. Topics: Adenine; Animals; Autophagy; Autophagy-Related Protein 5; Caspase 12; Cell Death; eIF-2 Kinase; Endoplasmic Reticulum; Enzyme Activation; Eukaryotic Initiation Factor-2; Gene Expression Regulation; Leucine; Lysosomes; Mice; Microtubule-Associated Proteins; Models, Biological; Pepstatins; Peptides; Phosphorylation; Protein Structure, Quaternary; RNA, Messenger; Sirolimus | 2007 |
Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy.
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity. Topics: Autophagy; Biological Transport, Active; Biomarkers; Cell Line; Humans; Hydrolases; Leucine; Lysosomes; Microscopy, Electron, Transmission; Microtubule-Associated Proteins; Pepstatins; Phagosomes | 2005 |
Human neuroblastoma (SH-SY5Y) cells are highly sensitive to the lysosomotropic aldehyde 3-aminopropanal.
3-Aminopropanal (3-AP), a degradation product of polyamines such as spermine, spermidine and putrescine, is a lysosomotropic small aldehyde that causes apoptosis or necrosis of most cells in culture, apparently by inducing moderate or extensive lysosomal rupture, respectively, and secondary mitochondrial changes. Here, using the human neuroblastoma SH-SY5Y cell line, we found simultaneous occurrence of apoptotic and necrotic cell death when cultures were exposed to 3-AP in concentrations that usually are either nontoxic, or only cause apoptosis. At 30 mM, but not at 10 mM, the lysosomotropic base and proton acceptor NH3 completely blocked the toxic effect of 3-AP, proving that 3-AP is lysosomotropic and suggesting that the lysosomal membrane proton pump of neuroblastoma cells is highly effective, creating a lower than normal lysosomal pH and, thus, extensive intralysosomal accumulation of lysosomotropic drugs. A wave of internal oxidative stress, secondary to changes in mitochondrial membrane potential, followed and gave rise to further lysosomal rupture. The preincubation of cells for 24 h with a chain-breaking free radical-scavenger, alpha-tocopherol, before exposure to 3-AP, significantly delayed both the wave of oxidative stress and the secondary lysosomal rupture, while it did not interfere with the early 3-AP-mediated phase of lysosomal break. Obviously, the reported oxidative stress and apoptosis/necrosis are consequences of lysosomal rupture with ensuing release of lysosomal enzymes resulting in direct/indirect effects on mitochondrial permeability, membrane potential, and electron transport. The induced oxidative stress seems to act as an amplifying loop causing further lysosomal break that can be partially prevented by alpha-tocopherol. Perhaps secondary brain damage during a critical post injury period can be prevented by the use of drugs that temporarily raise lysosomal pH, inactivate intralysosomal 3-AP, or stabilize lysosomal membranes against oxidative stress. Topics: Aldehydes; alpha-Tocopherol; Ammonium Chloride; Analysis of Variance; Annexin A5; Apoptosis; Cell Line, Tumor; Cell Survival; Chromatography, High Pressure Liquid; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Drug Interactions; Electrochemistry; Flow Cytometry; Fluoresceins; Glutathione; Humans; Leucine; Lysosomes; Mitochondria; Necrosis; Neuroblastoma; Pepstatins; Propylamines; Protease Inhibitors; Reactive Oxygen Species; Rhodamines; Time Factors | 2004 |
Protein kinase C inhibition induces DNA fragmentation in COLO 205 cells which is blocked by cysteine protease inhibition but not mediated through caspase-3.
Enhancing apoptosis to remove abnormal cells has potential in reversing cancerous processes. Caspase-3 activation generally accompanies apoptosis and its substrates include enzymes responsible for DNA fragmentation and isozymes of protein kinase C (PKC). Recent data, however, question its obligatory role in apoptosis. We have examined whether modulation of PKC activity induces apoptosis in COLO 205 cells and the role of caspase-3. Proliferation ([3H]thymidine) and apoptosis (DNA fragmentation and FACS) of COLO 205 cells were measured in response to PKC activation and inhibition. Caspase-3 activity was assayed and the effects of its inhibition with Ac-DEVD-cmk, and the effect of other protease inhibitors, on apoptosis were determined. PKC activation and inhibition both reduced DNA synthesis and induced DNA fragmentation. As PKC inhibitors induced DNA fragmentation more rapidly than PKC activators and failed to block activator effects, we conclude that it is PKC down-regulation (i.e., inhibition) after activator exposure that mediates apoptosis. Increases in caspase-3 activity occurred during apoptosis but apoptosis was not blocked by caspase inhibition. By contrast, the cysteine protease inhibitor, E-64d, blocked apoptosis. Cysteine proteases not of the caspase family may either act more closely to the apoptotic process than caspases or lie on an alternative, more active pathway. Topics: Aged; Alkaloids; Amino Acid Chloromethyl Ketones; Aprotinin; Benzophenanthridines; Benzyl Compounds; Caspase 3; Caspases; Cell Division; Cell Transformation, Neoplastic; Colonic Neoplasms; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Dipeptides; DNA; DNA Fragmentation; Down-Regulation; Humans; Hydrocarbons, Fluorinated; Leucine; Leupeptins; Male; Pepstatins; Phenanthridines; Protein Kinase C; Pyridines; Tumor Cells, Cultured | 2003 |
Human osteoclast cathepsin K is processed intracellularly prior to attachment and bone resorption.
Cathepsin K is a member of the papain superfamily of cysteine proteases and has been proposed to play a pivotal role in osteoclast-mediated bone resorption. We have developed a sensitive cytochemical assay to localize and quantify osteoclast cathepsin K activity in sections of osteoclastoma and human bone. In tissue sections, osteoclasts that are distant from bone express high levels of cathepsin K messenger RNA (mRNA) and protein. However, the majority of the cathepsin K in these cells is in an inactive zymogen form, as assessed using both the cytochemical assay and specific immunostaining. In contrast, osteoclasts that are closer to bone contain high levels of immunoreactive mature cathepsin K that codistributes with enzyme activity in a polarized fashion toward the bone surface. Polarization of active enzyme was clearly evident in osteoclasts in the vicinity of bone. The osteoclasts apposed to the bone surface were almost exclusively expressing the mature form of cathepsin K. These cells showed intense enzyme activity, which was polarized at the ruffled border. These results suggest that the in vivo activation of cathepsin K occurs intracellularly, before secretion into the resorption lacunae and the onset of bone resorption. The processing of procathepsin K to mature cathepsin K occurs as the osteoclast approaches bone, suggesting that local factors may regulate this process. Topics: Biochemistry; Bone and Bones; Bone Resorption; Cathepsin K; Cathepsins; Cell Adhesion; Cysteine Proteinase Inhibitors; Giant Cell Tumor of Bone; Humans; Hydrogen-Ion Concentration; Kidney; Leucine; Linear Models; Oligopeptides; Osteoclasts; Pepstatins; Phenylmethylsulfonyl Fluoride; Protease Inhibitors; Protein Processing, Post-Translational; Substrate Specificity; Tumor Cells, Cultured | 2001 |