peonidin-3-glucoside has been researched along with malvidin* in 3 studies
3 other study(ies) available for peonidin-3-glucoside and malvidin
Article | Year |
---|---|
Identification of antimutagenic properties of anthocyanins and other polyphenols from rose (Rosa centifolia) petals and tea.
Petals from different rose (Rosa centifolia) cultivars ("passion," "pink noblesse," and "sphinx") were assessed for antimutagenicity using Escherichia coli RNA polymerase B (rpoB)-based Rif (S) →Rif (R) (rifampicin sensitive to resistant) forward mutation assay against ethyl methanesulfonate (EMS)-induced mutagenesis. The aqueous extracts of rose petals from different cultivars exhibited a wide variation in their antimutagenicity. Among these, cv. "passion" was found to display maximum antimutagenicity. Upon further fractionation, the anthocyanin extract of cv. "passion" displayed significantly higher antimutagenicity than its phenolic extract. During thin-layer chromatography (TLC) analysis, the anthocyanin extract got resolved into 3 spots: yellow (Rf : 0.14), blue (Rf : 0.30), and pink (Rf : 0.49). Among these spots, the blue one displayed significantly higher antimutagenicity than the other 2. Upon high-performance liquid chromatography analysis, this blue spot further got resolved into 2 peaks (Rt : 2.7 and 3.8 min). The 2nd peak (Rt : 3.8 min) displaying high antimutagenicity was identified by ESI-IT-MS/MS analysis as peonidin 3-glucoside, whereas less antimutagenic peak 1 (Rt : 2.7) was identified as cyanidin 3, 5-diglucoside. The other TLC bands were also characterized by ESI-IT-MS/MS analysis. The least antimutagenic pink band (Rf : 0.49) was identified as malvidin 3-acetylglucoside-4-vinylcatechol, whereas non-antimutagenic yellow band (Rf : 0.14) was identified as luteolinidin anthocyanin derivative. Interestingly, the anthocyanin extracted from rose tea of cv. "passion" exhibited a similar antimutagenicity as that of the raw rose petal indicating the thermal stability of the contributing bioactive(s). The findings thus indicated the health protective property of differently colored rose cultivars and the nature of their active bioingredients. Topics: Anthocyanins; Antimutagenic Agents; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Escherichia coli; Ethyl Methanesulfonate; Glucosides; Mutagenesis; Plant Extracts; Polyphenols; Rosa; Tandem Mass Spectrometry | 2013 |
Differences in the structure of anthocyanins from the two amphibious plants, Lobelia cardinalis and Nesaea crassicaulis.
The foliar anthocyanin profiles of two amphibious plants, Nesaea crassicaulis and Lobelia cardinalis were analysed for the first time. N. crassicaulis produced very simple anthocyanins, achieving the highest concentrations when grown submerged. In contrast, L. cardinalis produced leaves with a high content of very complex, acylated anthocyanins, especially when growing emergent. Anthocyanins were separated by high performance liquid chromatography. Nesaea crassicaulis anthocyanins were identified according to their fragment mass spectra and ultra-visible-violet spectral characteristics and 1D and 2D NMR spectra as -3,5-di-O-β-glucosides of delphinidin, cyanidin, petunidin, malvidin and peonidin as well as cyanidine and peonidin-3-O-β-glucoside. In L. cardinalis cyanidin-3-O-[6-O-(4-O-E-p-coumaroyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside was the major anthocyanin and contributed more than 98% of total anthocyanin content. The remaining 2% was made up by cyanidin-3-O-[6-O-(4-O-E-caffeoyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside and pelargonidin-3-O-[6-O-(4-O-E-p-coumaroyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside. Topics: Anthocyanins; Flavonoids; Glucosides; Lobelia; Lythraceae; Magnetic Resonance Spectroscopy; Plant Leaves | 2013 |
Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines.
Garnacha Tintorera (also known as Alicante Bouschet) is one of the few V. vinifera grape cultivars with red-colored berry flesh. The study of the phenolic composition of both berry flesh and skin of Garnacha Tintorera grapes shows interesting findings. Anthocyanins were asymmetrically distributed within grape flesh and skins. Malvidin derivatives dominated in skin, followed by peonidin-type anthocyanins; in contrast, the flesh almost exclusively contained peonidin 3-glucoside. In addition, LC-UV-vis and LC-MS evidence suggest the presence of small amounts of peonidin 3,5-diglucoside and a second peonidin dihexoside derivative, and, very likely, the first report of the occurrence of pelargonidin 3-glucoside and its acetyl and p-coumaroyl derivatives in V. vinifera grapes. Flavonols also occurred in the flesh of Garnacha Tintorera grapes, but its flavonol profile showed lower contribution of trisubstituted flavonoid structures (myricetin, laricitrin, and syringetin) when compared to that of skin. The skin of Garnacha Tintorera grapes contained hydroxycinnamic acids in higher amounts than in flesh, caftaric acid being the main derivative found, and coutaric acid accounting for its highest proportion in the skin. The phenolic composition of the whole grape berries reflected the average of the differences described for the two aforementioned berry parts, and subsequently, the red wines made from these grapes had a phenolic composition closer to that shown by the whole berries. The formation of anthocyanin-derived pigments in Garnacha Tintorera red wines makes necessary the use of LC-MS for detecting the minor pelargonidin-based anthocyanins and peonidin dihexoside, which could be suggested as chemical markers for cultivar authentication of this grape cultivar and its wines. Topics: Anthocyanins; Color; Fruit; Glucosides; Phenols; Pigments, Biological; Vitis; Wine | 2009 |