pelargonidin-3-glucoside and malvidin-3-glucoside

pelargonidin-3-glucoside has been researched along with malvidin-3-glucoside* in 5 studies

Other Studies

5 other study(ies) available for pelargonidin-3-glucoside and malvidin-3-glucoside

ArticleYear
The Anthocyanins, Oenin and Callistephin, Protect RPE Cells Against Oxidative Stress.
    Photochemistry and photobiology, 2017, Volume: 93, Issue:2

    The retinal pigment epithelium (RPE) is a highly metabolic layer of postmitotic cells lining Bruch's membrane in the retina. While these cells contain endogenous photosensitizers that mediate blue light-induced damage, it has also been shown that blue light exposure damages mitochondrial DNA in RPE cells resulting in mitochondrial dysfunction and unregulated generation of reactive oxygen species (ROS). As RPE cells are postmitotic, it is imperative to decrease oxidative stress to these cells and preserve function. Dietary plant-derived antioxidants such as anthocyanins offer a simple and accessible solution for decreasing oxidative stress. The anthocyanins malvidin-3-O-glucoside (oenin) and pelargonidin-3-O-glucoside (callistephin) were tested for their ability and efficacy in decreasing ROS generation and preserving mitochondrial redox activity in blue light-irradiated ARPE-19 cells. A significant decrease in intracellular ROS with concurrent increase in mitochondrial redox activity was observed for tested concentrations of oenin, while callistephin was beneficial to stressed cells at higher concentrations. These findings suggest anthocyanins are effective antioxidants in blue light-stressed RPE cells in vitro. Additionally, oxidation products of these anthocyanins were examined using LC/MS and findings suggest the possibility of multiple oxidation sites for these compounds.

    Topics: Anthocyanins; Chromatography, Liquid; DNA Damage; DNA, Mitochondrial; Glucosides; Humans; Light; Oxidation-Reduction; Oxidative Stress; Reactive Oxygen Species; Retinal Pigment Epithelium; Spectrometry, Mass, Electrospray Ionization

2017
The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells.
    Journal of the science of food and agriculture, 2015, Mar-30, Volume: 95, Issue:5

    Studies have shown that anthocyanins (ACNs) in berries contribute to eye health. However, information on the relationship between the chemical structures and visual functions of ACNs is scarce. This study investigated the protection effects of ACNs with different structures against visible light-induced damage in human retinal pigment epithelial (RPE) cells.. Four ACNs with different aglycones, namely, pelargonidin-3-glucoside (Pg-3-glu), cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside, and malvidin-3-glucoside (Mv-3-glu), were isolated from three berries (blueberry, blackberry and strawberry). Of these ACNs, Cy-3-glu exhibited the highest reactive oxygen species inhibitory capacity in RPE cells, with 40 µg mL(-1) Cy-3-glu showing a ROS clearance of 57.5% ± 4.2%. The expression of vascular endothelial growth factor levels were significantly (P < 0.05) down-regulated by Cy-3-glu and Mv-3-glu in a visible light-induced damage RPE cell model. Cy-3-glu and Pg-3-glu treatments significantly (P < 0.05) inhibited the increase in β-galactosidase during the RPE cell ageing caused by visible light exposure.. Our findings suggest that the biological properties of different ACNs significantly vary. Cy-3-glu, which contains an ortho hydroxyl group in its B ring, possibly exerts multiple protective effects (antioxidant, anti-angiogenic and anti-ageing) in RPE cells. Therefore, Cy-3-glu may prove useful as a prophylactic health food for the prevention of retinal diseases.

    Topics: Angiogenesis Inhibitors; Anthocyanins; Antioxidants; Blueberry Plants; Cell Line; Cellular Senescence; Dietary Supplements; Fragaria; Fruit; Glucosides; Humans; Light; Molecular Structure; Retinal Diseases; Retinal Pigment Epithelium; Rubus; Stereoisomerism

2015
Authentication of geographical origin and crop system of grape juices by phenolic compounds and antioxidant activity using chemometrics.
    Journal of food science, 2015, Volume: 80, Issue:3

    The main goal of this work was to propose an authentication model based on the phenolic composition and antioxidant and metal chelating capacities of purple grape juices produced in Brazil and Europe in order to assess their typicality. For this purpose, organic, conventional, and biodynamic grape juices produced in Brazil (n = 65) and in Europe (n = 31) were analyzed and different multivariate class-modeling and classification statistical techniques were employed to differentiate juices based on the geographical origin and crop system. Overall, Brazilian juices, regardless of the crop system adopted, presented higher contents of total phenolic compounds and flavonoids, total monomeric anthocyanins, proanthocyanidins, flavonols, flavanols, cyanidin-3-glucoside, delphinidin-3-glucoside, and malvidin-3,5-glucoside. No differences were observed for trans-resveratrol, malvidin-3-glucoside, and pelargonidin-3-glucoside between countries and among crop systems. A total of 91% of Brazilian and 97% of European juices were adroitly classified using partial least squares discriminant analysis when the producing region was considered (92% efficiency), in which the free-radical scavenging activity toward 2,2-diphenyl-1-picrylhydrazyl, content of total phenolic compounds, gallic acid, and malvidin-3-glucoside were the variables responsible for the classification. Intraregional models based on soft independent modeling of class analogy were able to differentiate organic from conventional Brazilian juices as well as conventional and organic/biodynamic European juices.

    Topics: Anthocyanins; Beverages; Biphenyl Compounds; Brazil; Europe; Flavonoids; Fruit; Geography; Glucosides; Humans; Organic Agriculture; Oxidation-Reduction; Phenols; Picrates; Plant Extracts; Resveratrol; Stilbenes; Vitis

2015
Inhibitory effects of anthocyanins on secretion of Helicobacter pylori CagA and VacA toxins.
    International journal of medical sciences, 2012, Volume: 9, Issue:10

    Anthocyanins have been studied as potential antimicrobial agents against Helicobacter pylori. We investigated whether the biosynthesis and secretion of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) could be suppressed by anthocyanin treatment in vitro. H. pylori reference strain 60190 (CagA(+)/VacA(+)) was used in this study to investigate the inhibitory effects of anthocyanins; cyanidin 3-O-glucoside (C3G), peonidin 3-O-glucoside (Peo3G), pelargonidin 3-O-glucoside (Pel3G), and malvidin 3-O-glucoside (M3G) on expression and secretion of H. pylori toxins. Anthocyanins were added to bacterial cultures and Western blotting was used to determine secretion of CagA and VacA. Among them, we found that C3G inhibited secretion of CagA and VacA resulting in intracellular accumulation of CagA and VacA. C3G had no effect on cagA and vacA expression but suppressed secA transcription. As SecA is involved in translocation of bacterial proteins, the down-regulation of secA expression by C3G offers a mechanistic explanation for the inhibition of toxin secretion. To our knowledge, this is the first report suggesting that C3G inhibits secretion of the H. pylori toxins CagA and VacA via suppression of secA transcription.

    Topics: Anthocyanins; Antigens, Bacterial; Bacterial Proteins; Gene Expression Regulation, Bacterial; Glucosides; Helicobacter pylori; Humans

2012
Anthocyanin color behavior and stability during storage: effect of intermolecular copigmentation.
    Journal of agricultural and food chemistry, 2002, Dec-04, Volume: 50, Issue:25

    Intermolecular copigmentation reactions are significantly responsible for the manifold color expression of fruits, berries, and their products. These reactions were investigated with five anthocyanins and five phenolic acids acting as copigments. The stability of the pigment-copigment complexes formed was studied during a storage period of 6 months. The study was conducted using a UV-visible spectrophotometer to monitor the hyperchromic effect and the bathochromic shift of the complexes. The greatest copigmentation reactions took place in malvidin 3-glucoside solutions. The strongest copigments for all anthocyanins were ferulic and rosmarinic acids. The immediate reaction of rosmarinic acid with malvidin 3-glucoside resulted in the biggest bathochromic shift (19 nm) and the strongest hyperchromic effect, increasing the color intensity by 260%. The color induced by rosmarinic acid was not very stable. The color intensity of pelargonidin 3-glucoside increased greatly throughout the storage period with the addition of ferulic and caffeic acids.

    Topics: Anthocyanins; Caffeic Acids; Cinnamates; Color; Coumaric Acids; Depsides; Drug Stability; Food Preservation; Glucosides; Hydroxybenzoates; Pigments, Biological; Rosmarinic Acid; Solutions; Time Factors

2002