pelargonidin-3-glucoside and cyanidin

pelargonidin-3-glucoside has been researched along with cyanidin* in 2 studies

Other Studies

2 other study(ies) available for pelargonidin-3-glucoside and cyanidin

ArticleYear
In-silico drug-likeness analysis, ADME properties, and molecular docking studies of cyanidin-3-arabinoside, pelargonidin-3-glucoside, and peonidin-3-arabinoside as natural anticancer compounds against acting receptor-like kinase 5 receptor.
    Anti-cancer drugs, 2022, 07-01, Volume: 33, Issue:6

    The aim of the study was in-silico drug-likeness analysis, absorption, distribution, metabolism, and excretion (ADME) properties, and molecular docking studies of anthocyanins as natural anticancer compounds against acting receptor-like kinase 5 (ALK5) receptor. Transforming growth factor-β (TGF-β) plays an essential role in various cellular processes. Increased expression of TGF-β and its receptor TGFβR-I (i.e. ALK5) have been associated with poor prognosis in cancer patients.. The drug-likeness activity of anthocyanins was performed using SwissADME tool. Molecular docking studies were carried out by using the Autodock Vina 1.5.6 tool.. The results revealed that cyanidin-3-arabinoside (C3A), pelargonidin-3-glucoside (P3G), and peonidin-3-arabinoside (P3A) were able to use both Lipinski's rule of five and Ghose variations. The binding energies of C3A, P3G, and P3A against ALK5 were found as -8.0, -8.3, and -8.4 kcal mol-1, respectively.. These selected anthocyanins have shown higher binding energies than known inhibitors to the ALK5 receptor. Further in-vitro and in-vivo studies were strongly recommended to clarify the whole mechanism.

    Topics: Anthocyanins; Humans; Molecular Docking Simulation; Transforming Growth Factor beta

2022
Anthocyanin-derived phenolic acids form glucuronides following simulated gastrointestinal digestion and microsomal glucuronidation.
    Molecular nutrition & food research, 2011, Volume: 55, Issue:3

    Current research indicates that anthocyanins are primarily degraded to form phenolic acid products. However, no studies have yet demonstrated the metabolic conjugation of these anthocyanin-derived phenolic acids in humans.. Within the present study, a simulated gastrointestinal digestion model was used to evaluate the potential degradation of anthocyanins post-consumption. Subsequently, cyanidin (Cy) and pelargonidin and their degradation products, protocatechuic acid and 4-hydroxybenzoic acid, were incubated in the presence of human liver microsomes to assess their potential to form hepatic glucuronide conjugates. For structural conformation, phenolic glucuronides were chemically synthesised and compared to the microsomal metabolites. During the simulated gastric digestion, anthocyanin glycosides (200 μM) remained stable however their aglycone derivatives were significantly degraded (20% loss), while during subsequent pancreatic/intestinal digestion only pelargonidin-3-glucoside remained stable while cyanidin-3-glucoside (30% loss) and Cy and pelagonidin aglycones were significantly degraded (100% loss, respectively). Following microsomal metabolism, pelargonidin formed 4-hydroxybenzoic acid, which was further metabolised (65%) to form two additional glucuronide conjugates, while Cy formed protocatechuic acid, which was further metabolised (43%) to form three glucuronide conjugates.. We propose that following ingestion, anthocyanins may be found in the systemic circulation as free or conjugated phenolic acids, which should be a focus of future dietary interventions.

    Topics: Analysis of Variance; Anthocyanins; Chromatography, High Pressure Liquid; Digestion; Glucosides; Glucuronides; Humans; Hydroxybenzoates; Intestinal Mucosa; Male; Microsomes, Liver; Parabens

2011