pectins has been researched along with potassium-hydroxide* in 5 studies
5 other study(ies) available for pectins and potassium-hydroxide
Article | Year |
---|---|
Deconstruction of banana peel for carbohydrate fractionation.
The deconstruction of banana peel for carbohydrate recovery was performed by sequential treatment (acid, alkaline, and enzymatic). The pretreatment with citric acid promoted the extraction of pectin, resulting in a yield of 8%. In addition, xylose and XOS, 348.5 and 17.3 mg/g xylan, respectively, were also quantified in acidic liquor as a result of partial depolymerization of hemicellulose. The spent solid was pretreated with alkaline solution (NaOH or KOH) for delignification and release of residual carbohydrates from the hemicellulose. The yields of xylose and arabinose (225.2 and 174.0 mg/g hemicellulose) were approximately 40% higher in the pretreatment with KOH, while pretreatment with NaOH promoted higher delignification (67%), XOS yield (32.6 mg/g xylan), and preservation of cellulosic fraction. Finally, the spent alkaline solid, rich in cellulose (76%), was treated enzymatically to release glucose, reaching the final concentration of 28.2 g/L. The mass balance showed that through sequential treatment, 9.9 g of xylose, 0.5 g of XOS, and 8.2 g of glucose were obtained from 100 g of raw banana peels, representing 65.8% and 46.5% conversion of hemicellulose and cellulose, respectively. The study of the fractionation of carbohydrates in banana peel proved to be a useful tool for valorization, mainly of the hemicellulose fraction for the production of XOS and xylose with high value applications in the food industry. Topics: Arabinose; Fruit; Hydrolysis; Hydroxides; Musa; Pectins; Polysaccharides; Potassium Compounds; Sodium Hydroxide; Xylose | 2021 |
Transformation of hard pollen into soft matter.
Pollen's practically-indestructible shell structure has long inspired the biomimetic design of organic materials. However, there is limited understanding of how the mechanical, chemical, and adhesion properties of pollen are biologically controlled and whether strategies can be devised to manipulate pollen beyond natural performance limits. Here, we report a facile approach to transform pollen grains into soft microgel by remodeling pollen shells. Marked alterations to the pollen substructures led to environmental stimuli responsiveness, which reveal how the interplay of substructure-specific material properties dictates microgel swelling behavior. Our investigation of pollen grains from across the plant kingdom further showed that microgel formation occurs with tested pollen species from eudicot plants. Collectively, our experimental and computational results offer fundamental insights into how tuning pollen structure can cause dramatic alterations to material properties, and inspire future investigation into understanding how the material science of pollen might influence plant reproductive success. Topics: Biomimetics; Computational Chemistry; Epitopes; Esterification; Hardness; Hydrolysis; Hydroxides; Materials Science; Microgels; Microscopy, Fluorescence; Pectins; Pollen; Pollination; Potassium Compounds; Spectroscopy, Fourier Transform Infrared | 2020 |
Modification of pectin and hemicellulose polysaccharides in relation to aril breakdown of harvested longan fruit.
To investigate the modification of cell wall polysaccharides in relation to aril breakdown in harvested longan fruit, three pectin fractions (WSP, water soluble pectin; CSP, CDTA-soluble pectin; ASP, alkali soluble pectin) and one hemicellulose fraction (4 M KOH-SHC, 4 M KOH-soluble hemicellulose) were extracted, and their contents, monosaccharide compositions and molecular weights were evaluated. As aril breakdown intensified, CSP content increased while ASP and 4 M KOH-SHC contents decreased, suggesting the solubilization and conversion of cell wall components. Furthermore, the molar percentage of arabinose (Ara), as the main component of the side-chains, decreased largely in CSP and ASP while that of rhamnose (Rha), as branch point for the attachment of neutral sugar side chains, increased during aril breakdown. Analysis of (Ara+Gal)/Rha ratio showed that the depolymerization of CSP and ASP happened predominantly in side-chains formed of Ara residues. For 4 M KOH-SHC, more backbones were depolymerized during aril breakdown. Moreover, it was found that the molecular weights of CSP, ASP and 4 M KOH-SHC polysaccharides tended to decrease as aril breakdown intensified. These results suggest that both enhanced depolymerization and structural modifications of polysaccharides in the CSP, ASP and 4 M KOH-SHC fractions might be responsible for aril breakdown of harvested longan fruit. Topics: Cell Wall; Chromatography, Gel; Fruit; Hydroxides; Molecular Weight; Monosaccharides; Pectins; Polysaccharides; Potassium Compounds; Sapindaceae; Water | 2013 |
Ferulic acid crosslinks in asparagus cell walls in relation to texture.
Post-harvest toughening of asparagus spears is associated with a large increase in monomeric and diferulic acids in the cell walls of stem tissues. The purpose of this study has been to investigate the distribution of these phenolic components among cell wall polymers and the role they play in the formation of associated pectic-xylan-phenolic complexes in relation to post-harvest toughening. The phenolic esters are found in all the extractable polysaccharide fractions, particularly the 0.5 M KOH fraction, as well as the insoluble cellulose-rich residue. The storage-related increase occurs in all fractions but is most prominent in the 0.5 M KOH-soluble components. Degradation of 0.5 M KOH subfractions with pure polysaccharide degrading enzymes has confirmed the occurrence of pectic-xylan-phenolic complexes in which ferulic acid and its dehydrodimers are attached to the xylan component but not to the pectic component. Studies on cell separation show that the maturation- and storage-related increase in thermal stability of cell adhesion (and therefore texture) is probably due to an increase in phenolic cross linking of xylans mainly in the parenchyma tissues. This overcomes the thermal lability of the pectic polysaccharides that are responsible for cell adhesion in immature tissues. The storage-induced appearance of some of the diferulic acid moieties in a number of wall polymer fractions supports the hypothesis that the storage affect is a wound-induced response rather than a continuation of maturation-related activity. Topics: Asparagus Plant; Carbohydrates; Cell Fractionation; Cell Wall; Chemical Precipitation; Coumaric Acids; Cross-Linking Reagents; Ethanol; Food Technology; Hydroxides; Pectins; Phenols; Potassium Compounds; Xylans | 2004 |
Isolation and characterisation of cell wall polysaccharides from cocoa (Theobroma cacao L.) beans.
Cell wall material (CWM) was prepared from sun-dried cocoa (Theobroma cacao L.) bean cotyledons before and after fermentation. The monosaccharide composition of the CWM was identical for unfermented and fermented beans. Polysaccharides of the CWM were solubilised by sequential extraction with 0.05 M trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA), 0.05 M Na2CO3, and 1 M, 4 M and 8 M KOH. The non-cellulosic sugar composition for each fraction was similar for unfermented and fermented samples, indicating that fermentation caused no significant modification of the structural features of individual cell wall polysaccharides. Pectic polysaccharides accounted for 60% of the cell wall polysaccharides but only small amounts could be solubilised in solutions of CDTA, Na2CO3, and 1 M and 4 M KOH. The bulk of the pectic polysaccharides were solubilised in 8 M KOH and were characterised by a rhamnogalacturonan backbone heavily substituted with side-chains of 5-linked arabinose and 4-linked galactose. Linkage analysis indicated the presence of additional acidic polysaccharides, including a xylogalacturonan and a glucuronoxylan. Cellulose, xyloglucan and a galactoglucomannan accounted for 28%, 8% and 3% of the cell wall polysaccharides, respectively. It is concluded that the types and structural features of cell wall polysaccharides in cocoa beans resemble those found in the parenchymatous tissue of many fruits and vegetables rather than those reported for many seed storage polysaccharides. Topics: Cacao; Cell Wall; Chemical Fractionation; Chromatography, Gel; Hydroxides; Monosaccharides; Pectins; Polysaccharides; Potassium Compounds | 2000 |