pectins and indoleacetic-acid

pectins has been researched along with indoleacetic-acid* in 6 studies

Other Studies

6 other study(ies) available for pectins and indoleacetic-acid

ArticleYear
Drought Disrupts Auxin Localization in Abscission Zone and Modifies Cell Wall Structure Leading to Flower Separation in Yellow Lupine.
    International journal of molecular sciences, 2020, Sep-18, Volume: 21, Issue:18

    Drought causes the excessive abscission of flowers in yellow lupine, leading to yield loss and serious economic consequences in agriculture. The structure that determines the time of flower shedding is the abscission zone (AZ). Its functioning depends on the undisturbed auxin movement from the flower to the stem. However, little is known about the mechanism guiding cell-cell adhesion directly in an AZ under water deficit. Therefore, here, we seek a fuller understanding of drought-dependent reactions and check the hypothesis that water limitation in soil disturbs the natural auxin balance within the AZ and, in this way, modifies the cell wall structure, leading to flower separation. Our strategy combined microscopic, biochemical, and chromatography approaches. We show that drought affects indole-3-acetic acid (IAA) distribution and evokes cellular changes, indicating AZ activation and flower abortion. Drought action was manifested by the accumulation of proline in the AZ. Moreover, cell wall-related modifications in response to drought are associated with reorganization of methylated homogalacturonans (HG) in the AZ, and upregulation of pectin methylesterase (PME) and polygalacturonase (PG)-enzymes responsible for pectin remodeling. Another symptom of stress action is the accumulation of hemicelluloses. Our data provide new insights into cell wall remodeling events during drought-induced flower abscission, which is relevant to control plant production.

    Topics: Carboxylic Ester Hydrolases; Cell Wall; Chromatography, Gas; Droughts; Flowers; Gene Expression Regulation, Plant; Indoleacetic Acids; Lupinus; Mass Spectrometry; Pectins; Plant Proteins; Polygalacturonase; Polysaccharides; Proline; Water

2020
Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway.
    Plant, cell & environment, 2019, Volume: 42, Issue:4

    High temperature (HT) is becoming an increasingly serious factor in limiting crop production with global climate change. During hot seasons, owing to prevailing HT, cultivated tomatoes are prone to exhibiting stigma exsertion, which hampers pollination and causes fruit set failure. However, the underlying regulatory mechanisms of the HT-induced stigma exsertion remain largely unknown. Here, we demonstrate that stigma exsertion induced by HT in cultivated tomato is caused by more seriously shortened stamens than pistils, which is different from the stigma exsertion observed in wild tomato species. Under the HT condition, the different responses of pectin, sugar, expansin, and cyclin cause cell wall remodelling and differentially localized cell division and selective cell enlargement, which further determine the lengths of stamens and pistils. In addition, auxin and jasmonate (JA) are implicated in regulating cell division and cell expansion in stamens and pistils, and exogenous JA instead of auxin treatment can effectively rescue tomato stigma exsertion through regulating the JA/COI1 signalling pathway. Our findings provide a better understanding of stigma exsertions under the HT condition in tomato and uncover a new function of JA in improving plant abiotic stress tolerance.

    Topics: Cyclopentanes; Flowers; Fructose; Glucose; Hot Temperature; Indoleacetic Acids; Oxylipins; Pectins; Plant Growth Regulators; Pollination; Real-Time Polymerase Chain Reaction; Self-Fertilization; Signal Transduction; Solanum lycopersicum; Sucrose

2019
Symptoms of Fern Distortion Syndrome resulting from inoculation with opportunistic endophytic fluorescent Pseudomonas spp.
    PloS one, 2013, Volume: 8, Issue:3

    Fern Distortion Syndrome (FDS) is a serious disease of Leatherleaf fern (Rumohra adiantiformis). The main symptom of FDS is distortion of fronds, making them unmarketable. Additional symptoms include stunting, irregular sporulation, decreased rhizome diameter, and internal discoloration of rhizomes. We previously reported an association of symptoms with increased endophytic rhizome populations of fluorescent pseudomonads (FPs). The aim of the current study was to determine if FPs from ferns in Costa Rica with typical FDS symptoms would recreate symptoms of FDS.. Greenhouse tests were conducted over a 29-month period. Micro-propagated ferns derived from tissue culture were first grown one year to produce rhizomes. Then, using an 8×9 randomized complete block experimental design, 8 replicate rhizomes were inoculated by dipping into 9 different treatments before planting. Treatments included water without bacteria (control), and four different groups of FPs, each at a two concentrations. The four groups of FPs included one group from healthy ferns without symptoms (another control treatment), two groups isolated from inside rhizomes of symptomatic ferns, and one group isolated from inside roots of symptomatic ferns. Symptoms were assessed 12 and 17 months later, and populations of FPs inside newly formed rhizomes were determined after 17 months. Results showed that inoculation with mixtures of FPs from ferns with FDS symptoms, but not from healthy ferns, recreated the primary symptom of frond deformities and also the secondary symptoms of irregular sporulation, decreased rhizome diameter, and internal discoloration of rhizomes.. These results suggest a model of causation of FDS in which symptoms result from latent infections by multiple species of opportunistic endophytic bacteria containing virulence genes that are expressed when populations inside the plant reach a minimum level.

    Topics: Dryopteridaceae; Endophytes; Fluorescence; Indoleacetic Acids; Opportunistic Infections; Pectins; Plant Diseases; Pseudomonas

2013
IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri.
    Journal of experimental botany, 2008, Volume: 59, Issue:9

    The effects of several hormones on pollen tube growth were compared in Torenia fournieri and it was found that IAA was the most effective, stimulating pollen tube growth and causing the shank part of pollen tubes to be slender and straighter. The role of IAA was investigated by studying the changes in ultrastructure and PM H(+)-ATPase distribution in the pollen tubes and the modification of the tube wall. Using the fluorescent marker FM4-64, together with transmission electron microscopy, it was shown that secretory vesicles and mitochondria increased in IAA-treated tubes. Immunolocalization and fluorescence labelling, together with Fourier-transform infrared analysis, detected that IAA enhanced the level of PM H(+)-ATPase and the synthesis of pectins, and reduced the cellulose density in pollen tubes. Importantly, to observe the orientation of cellulose microfibrils in pollen tubes in situ, atomic force microscopy was used to examine the 'intact' tube wall. Atomic force microscopy images showed that cellulose microfibrils were parallel to each other in the subapical region of IAA-treated tubes, but disorganized in control tubes. All results provided new insights into the functions of cellulose microfibrils in pollen tube growth and direction, and revealed that the IAA-induced changes of pollen tubes were attributed to the increase in secretory vesicles, mitochondria, and PM H(+)-ATPase, and the modification of pectin and cellulose microfibrils in the tube wall.

    Topics: Cell Wall; Cellulose; Indoleacetic Acids; Magnoliopsida; Microscopy, Electron, Transmission; Pectins; Plant Growth Regulators; Plant Proteins; Pollen Tube; Proton-Translocating ATPases; Pyridinium Compounds; Quaternary Ammonium Compounds

2008
Differential accumulation of transcripts for ACC synthase and ACC oxidase homologs in etiolated mung bean hypocotyls in response to various stimuli.
    Molecules and cells, 1998, Jun-30, Volume: 8, Issue:3

    Ethylene can be produced by a variety of developmental and environmental factors such as ripening, the plant hormone auxin, and mechanical wounding via a biosynthetic pathway including AdoMet synthase, ACC synthase, and ACC oxidase steps. ACC synthase and ACC oxidase are known to be encoded by multigene families, and are believed to be differentially expressed in response to various stimuli. In mung bean, ACC synthase is encoded by 7 genes, ACS1, ACS2 ACS3, ACS4, ACS5, ACS6, and ACS7, and ACC oxidase by 2 genes, ACO1 and ACO2. In this study, was have investigated differential accumulation of transcripts for ACC synthase and ACC oxidase homologs in etiolated mung bean hypocotyls under various conditions by the semiquantitative RT-PCR method. Primers which can specifically bind and amplify each cDNAs of ACS1, ACS2, ACS3, ACS4, ACS5, ACS6, ACS7, and ACO1, and ACO2 were designed and used to monitor the responses to various stimuli. Transcripts of ACO1 and ACO2 were accumulated constitutively in the hypocotyl segments even without andy treatment. After cold treatment on intact plant, transcripts of ACS5, ACS6, and ACS7 were accumulated in the hypocotyl segments. We also found the excision of hypocotyl segments and incubation in a buffer solution, a typical way of chemical treatments to hypocotyl segments, lowered the level of ACO2 transcripts with little change of the level of ACO1 transcripts. In response to incubation with IAA (0.1 mM) of excised hypocotyl segments, transcripts of ACS1, ACS6, and ACS7 were accumulated and the level of ACO2 transcripts was increased. Transcripts of ACS1, ACS2, ACS3, ACS5, ACS6 and ACS7 were induced by incubation with OGA (50 micrograms/ml), while the transcripts of ACS4 were accumulated and the level of ACO2 transcripts was increased by incubation with 1 mM LiCl. Our results strongly suggest that all seven ACC synthase genes and two ACC oxidase genes must be active and each gene is differentially regulated by a different subset of the inducing factors.

    Topics: Adjuvants, Immunologic; Amino Acid Oxidoreductases; Cold Temperature; DNA Primers; Enzyme Induction; Fabaceae; Gene Expression Regulation, Developmental; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Hypocotyl; Indoleacetic Acids; Lithium Chloride; Lyases; Multigene Family; Oligosaccharides; Pectins; Plant Growth Regulators; Plants, Medicinal; Polymerase Chain Reaction; RNA, Plant; Sensitivity and Specificity; Sequence Homology, Amino Acid; Stimulation, Chemical; Transcription, Genetic; Transcriptional Activation; Tromethamine

1998
Metabolism and hormonal control of pectic substances.
    The Journal of biological chemistry, 1959, Volume: 234

    Topics: Carbohydrate Metabolism; Indoleacetic Acids; Pectins

1959