pectins and gamma-sitosterol

pectins has been researched along with gamma-sitosterol* in 2 studies

Other Studies

2 other study(ies) available for pectins and gamma-sitosterol

ArticleYear
[Composition and content of biologically active substances in rose hips].
    Voprosy pitaniia, 2012, Volume: 81, Issue:6

    The paper studies the chemical composition of the powders obtained from the pulp with the skins and seeds of fruits of wild rose hips. Research results have shown that the main fraction of the powder is dietary fiber, powder of seeds of insoluble fiber in 1,6 and 2,3 higher than in the powder of the fruit with a thin skin and pulp, respectively. The greatest amount of carbohydrates and protein found in powders and pulp of the fruit with a thin skin, and lipids predominate in the powder from the seeds. Found that the lipid powder rosehip richest in oleic, linoleic and linolenic acids, the share of oleic acid has 6,4-19,2%, linoleic and linolenic 19,7-45,8 and 23,3-33,9% of the amount of fatty acids. Lipids powders of hips and seeds of rose have higher levels of essential linoleic acid and powder from the pulp with the skins - linolenic acid. In the study established the presence of sterols 7 fractions, the predominant of which is the beta-sitosterol. In the powder from the pulp with the skins found the greatest amount of ascorbic acid, carotenoids, and the powder of seeds - vitamin E. Carotenoids in powders are beta-carotene and lycopene. The high content of ascorbic acid, vitamin E and carotenoids in powder from wild rose hips makes them a good source of antioxidants. Therefore, we studied the possibility of using vegetable powders obtained from hips of wild rose, to enrich biologically active substances such as vitamins C, E and carotenoids, food supply, particularly of health care use. Rosehip powder from the pulp with the skins had the highest antioxidant activity, antioxidant activity of hips powders was 74% of the activity of powder from the pulp with the skins, the lowest antioxidant activity was observed in the powder from the wild rose seeds. That's way, based on the analysis of the chemical composition of rose hip powder found high levels they ascorbic acid, carotenoids, flavonoids,found their high antioxidant activity. It allows to recommend powders produced from the hips, as a source of physiologically functional ingredients for the production of fortified food products, especially medical and prophylactic purposes. The use of such additives will fill the gap in the body of P-active substances, vitamins C and E, beta-carotene, pectin substances.

    Topics: Ascorbic Acid; Carotenoids; Fatty Acids, Unsaturated; Food Analysis; Food, Fortified; Fruit; Pectins; Rosa; Sitosterols; Vitamin E

2012
Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa.
    Plant & cell physiology, 2002, Volume: 43, Issue:12

    Pectin administered to Uncaria tomentosa cell suspension cultures, was found to increase the production of triterpene acids (ursolic and oleanolic acid), however, neither growth nor sterol accumulation were affected. Cell cultures showed that pectin treatment caused a rapid threefold increase in the activities of enzymes involved in the biosynthesis of C(5) and C(30 )isoprenoid, such as isopentenyl diphosphate isomerase and squalene synthase. The activity of a farnesyl diphosphatase, which could divert the flux of farnesyl diphosphate to farnesol, was two times lower in elicited than in control cells. Elicited cells also transformed more rapidly a higher percentage of [5-(3)H]mevalonic acid into triterpene acids. Interestingly, addition of terbinafine, an inhibitor of squalene epoxidase, to elicited cell cultures inhibited sterol accumulation while triterpene production was not inhibited. These results suggest that in U. tomentosa cells, both the previously mentioned enzymes and those involved in squalene 2,3-oxide formation play an important regulatory role in the biosynthesis of sterols and triterpenes.

    Topics: Carbon-Carbon Double Bond Isomerases; Cat's Claw; Cells, Cultured; Enzyme Inhibitors; Farnesyl-Diphosphate Farnesyltransferase; Hemiterpenes; Mevalonic Acid; Naphthalenes; Oleanolic Acid; Oxygenases; Pectins; Phosphoric Monoester Hydrolases; Phytosterols; Sitosterols; Squalene; Squalene Monooxygenase; Terbinafine; Triterpenes; Tritium; Ursolic Acid

2002