pectins has been researched along with ethylene* in 24 studies
1 review(s) available for pectins and ethylene
Article | Year |
---|---|
Fruit ripening phenomena--an overview.
Fruits constitute a commercially important and nutritionally indispensable food commodity. Being a part of a balanced diet, fruits play a vital role in human nutrition by supplying the necessary growth regulating factors essential for maintaining normal health. Fruits are widely distributed in nature. One of the limiting factors that influence their economic value is the relatively short ripening period and reduced post-harvest life. Fruit ripening is a highly coordinated, genetically programmed, and an irreversible phenomenon involving a series of physiological, biochemical, and organoleptic changes, that finally leads to the development of a soft edible ripe fruit with desirable quality attributes. Excessive textural softening during ripening leads to adverse effects/spoilage upon storage. Carbohydrates play a major role in the ripening process, by way of depolymerization leading to decreased molecular size with concomitant increase in the levels of ripening inducing specific enzymes, whose target differ from fruit to fruit. The major classes of cell wall polysaccharides that undergo modifications during ripening are starch, pectins, cellulose, and hemicelluloses. Pectins are the common and major components of primary cell wall and middle lamella, contributing to the texture and quality of fruits. Their degradation during ripening seems to be responsible for tissue softening of a number of fruits. Structurally pectins are a diverse group of heteropolysaccharides containing partially methylated D-galacturonic acid residues with side chain appendages of several neutral polysaccharides. The degree of polymerization/esterification and the proportion of neutral sugar residues/side chains are the principal factors contributing to their (micro-) heterogeneity. Pectin degrading enzymes such as polygalacturonase, pectin methyl esterase, lyase, and rhamnogalacturonase are the most implicated in fruit-tissue softening. Recent advances in molecular biology have provided a better understanding of the biochemistry of fruit ripening as well as providing a hand for genetic manipulation of the entire ripening process. It is desirable that significant breakthroughs in such related areas will come forth in the near future, leading to considerable societal benefits. Topics: Carboxylic Ester Hydrolases; Cell Wall; Dietary Carbohydrates; Ethylenes; Fruit; Glycoside Hydrolases; Lyases; Pectins; Polysaccharides | 2007 |
23 other study(ies) available for pectins and ethylene
Article | Year |
---|---|
Consensus co-expression network analysis identifies AdZAT5 regulating pectin degradation in ripening kiwifruit.
Cell wall degradation and remodeling is the key factor causing fruit softening during ripening.. To explore the mechanism underlying postharvest cell wall metabolism, a transcriptome analysis method for more precious prediction on functional genes was needed.. Kiwifruits treated by ethylene (a conventional and effective phytohormone to accelerate climacteric fruit ripening and softening as kiwifruits) or air were taken as materials. Here, Consensus Coexpression Network Analysis (CCNA), a procedure evolved from Weighted Gene Co-expression Network Analysis (WGCNA) package in R, was applied and generated 85 consensus clusters from twelve transcriptome libraries. Advanced and comprehensive modifications were achieved by combination of CCNA and WGCNA with introduction of physiological traits, including firmness, cell wall materials, cellulose, hemicellulose, water soluble pectin, covalent binding pectin and ionic soluble pectin.. As a result, six cell wall metabolisms related structural genes AdGAL1, AdMAN1, AdPL1, AdPL5, Adβ-Gal5, AdPME1 and four transcription factors AdZAT5, AdDOF3, AdNAC083, AdMYBR4 were identified as hub candidate genes for pectin degradation. Dual-luciferase system and electrophoretic mobility shift assays validated that promoters of AdPL5 and Adβ-Gal5 were recognized and trans-activated by transcription factor AdZAT5. The relatively higher enzyme activities of PL and β-Gal were observed in ethylene treated kiwifruit, further emphasized the critical roles of these two pectin related genes for fruit softening. Moreover, stable transient overexpression AdZAT5 in kiwifruit significantly enhanced AdPL5 and Adβ-Gal5 expression, which confirmed the in vivo regulations between transcription factor and pectin related genes.. Thus, modification and application of CCNA would be powerful for the precious phishing the unknown regulators. It revealed that AdZAT5 is a key factor for pectin degradation by binding and regulating effector genes AdPL5 and Adβ-Gal5. Topics: Actinidia; Consensus; Ethylenes; Fruit; Pectins; Transcription Factors | 2022 |
Ammonium improved cell wall and cell membrane P reutilization and external P uptake in a putrescine and ethylene dependent pathway.
Ammonium promotes rice P uptake and reutilization better than nitrate, under P starvation conditions; however, the underlying mechanism remains unclear. In this study, ammonium treatment significantly increased putrescine and ethylene content in rice roots under P deficient conditions, by increasing the protein content of ornithine decarboxylase and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase compared with nitrate treatment. Ammonium treatment increased rice root cell wall P release by increasing pectin content and pectin methyl esterase (PME) activity, increased rice shoot cell membrane P release by decreasing phosphorus-containing lipid components, and maintained internal P homeostasis by increasing OsPT2/6/8 expression compared with nitrate treatment. Ammonium also improved external P uptake by regulating root morphology and increased rice grain yield by increasing the panicle number compared with nitrate treatment. The application of putrescine and ethylene synthesis precursor ACC further improved the above process. Our results demonstrate for the first time that ammonium increases rice P acquisition, reutilization, and homeostasis, and rice grain yield, in a putrescine- and ethylene-dependent manner, better than nitrate, under P starvation conditions. Topics: Ammonium Compounds; Cell Membrane; Cell Wall; Esterases; Ethylenes; Lipids; Nitrates; Ornithine Decarboxylase; Oryza; Oxidoreductases; Pectins; Phosphorus; Plant Roots; Putrescine | 2022 |
Ethylene plays an important role in the softening and sucrose metabolism of blueberries postharvest.
We studied the effects of ethylene on softening and sucrose metabolism in postharvest blueberry fruit by examining the responses of fruit firmness, cell wall polysaccharides, cell wall enzymes, four key genes of cell wall degradation and metabolism, enzyme activities, and five key genes of sucrose metabolism to exogenous ethylene treatments. Ethylene was found to accelerate blueberry softening, as it promoted the degradation of pectin and expression of pectinesterase (PE) and polygalacturonase (PG). Sucrose catabolism was accelerated with fruit softening, while sucrose content, sucrose phosphate synthase (SPS) activity were positively correlated with the loss of fruit firmness. Exogenous ethylene treatments promoted sucrose metabolism by inhibiting the expression of VcSPS1 and VcNIN2 and stimulating the expression of VcSS1 and VcCWINV1. These results indicate that ethylene plays an important role in fruit softening and sucrose metabolism of blueberry at 20 °C, and there may be a link between sucrose metabolism and fruit softening. Topics: Blueberry Plants; Carboxylic Ester Hydrolases; Cell Wall; Ethylenes; Fruit; Gene Expression Regulation, Plant; Glucosyltransferases; Pectins; Plant Proteins; Polygalacturonase; Polysaccharides; Sucrose | 2020 |
AtPME17 is a functional Arabidopsis thaliana pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to Botrytis cinerea.
Pectin is synthesized in a highly methylesterified form in the Golgi cisternae and partially de-methylesterified in muro by pectin methylesterases (PMEs). Arabidopsis thaliana produces a local and strong induction of PME activity during the infection of the necrotrophic fungus Botrytis cinerea. AtPME17 is a putative A. thaliana PME highly induced in response to B. cinerea. Here, a fine tuning of AtPME17 expression by different defence hormones was identified. Our genetic evidence demonstrates that AtPME17 strongly contributes to the pathogen-induced PME activity and resistance against B. cinerea by triggering jasmonic acid-ethylene-dependent PDF1.2 expression. AtPME17 belongs to group 2 isoforms of PMEs characterized by a PME domain preceded by an N-terminal PRO region. However, the biochemical evidence for AtPME17 as a functional PME is still lacking and the role played by its PRO region is not known. Using the Pichia pastoris expression system, we demonstrate that AtPME17 is a functional PME with activity favoured by an increase in pH. AtPME17 performs a blockwise pattern of pectin de-methylesterification that favours the formation of egg-box structures between homogalacturonans. Recombinant AtPME17 expression in Escherichia coli reveals that the PRO region acts as an intramolecular inhibitor of AtPME17 activity. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Carboxylic Ester Hydrolases; Cyclopentanes; Defensins; Escherichia coli; Ethylenes; Gene Expression; Isoenzymes; Oxylipins; Pectins; Plant Diseases; Promoter Regions, Genetic; Recombinant Proteins; Saccharomycetales | 2020 |
Touch-induced seedling morphological changes are determined by ethylene-regulated pectin degradation.
How mechanical forces regulate plant growth is a fascinating and long-standing question. After germination underground, buried seedlings have to dynamically adjust their growth to respond to mechanical stimulation from soil barriers. Here, we designed a lid touch assay and used atomic force microscopy to investigate the mechanical responses of seedlings during soil emergence. Touching seedlings induced increases in cell wall stiffness and decreases in cell elongation, which were correlated with pectin degradation. We revealed that Topics: Arabidopsis; Arabidopsis Proteins; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Nuclear Proteins; Pectins; Seedlings; Soil; Touch | 2020 |
Rosa hybrida RhERF1 and RhERF4 mediate ethylene- and auxin-regulated petal abscission by influencing pectin degradation.
The timing of plant organ abscission is modulated by the balance of two hormones, ethylene and auxin, while the mechanism of organ shedding depends on the loss of middle lamella pectin in the abscission zone (AZ). However, the mechanisms involved in sensing the balance of auxin and ethylene and that affect pectin degradation during abscission are not well understood. In this study, we identified two members of the APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor family in rose (Rosa hybrida), RhERF1 and RhERF4 which play a role in petal abscission. The expression of RhERF1 and RhERF4 was influenced by ethylene and auxin, respectively. Reduced expression of RhERF1 or RhERF4 was observed to accelerate petal abscission. Global expression analysis and real-time PCR assays revealed that RhERF1 and RhERF4 modulate the expression of genes encoding pectin-metabolizing enzymes. A reduction in the abundance of pectin epitopes was detected in the AZs of RhERF1 and RhERF4-silenced plants by immunofluorescence microscopy analysis. In addition, RhERF1 and RhERF4 were shown to bind to the promoter of the pectin-metabolizing gene β-GALACTOSIDASE 1 (RhBGLA1), and reduced expression of RhBGLA1 delayed petal abscission. We conclude that during petal abscission, RhERF1 and RhERF4 integrate and coordinate ethylene and auxin signals to modulate pectin metabolism, in part by regulating the expression of RhBGLA1. Topics: beta-Galactosidase; Cells, Cultured; DNA-Binding Proteins; Ethylenes; Flowers; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Indoleacetic Acids; Pectins; Plant Proteins; Promoter Regions, Genetic; Protein Binding; Rosa | 2019 |
Increased firmness and modified cell wall composition by ethylene were reversed by the ethylene inhibitor 1-methylcyclopropene (1-MCP) in the non-climacteric olives harvested at dark green stage - Possible implementation of ethylene for olive quality.
Topics: Cell Wall; Cellulose; Crop Production; Cyclopropanes; Dose-Response Relationship, Drug; Ethylenes; Food Quality; Fruit; Lignin; Olea; Pectins | 2019 |
Role of Brassinosteroids in Persimmon ( Diospyros kaki L.) Fruit Ripening.
Brassinosteroids (BRs) are phytohormones that regulate numerous processes including fruit ripening. In this study, persimmon ( Diospyros kaki L.) fruits were treated with 24-epibrassinolide (EBR) or brassinazole (Brz, a BR biosynthesis inhibitor) and then stored at ambient temperature. The results show that endogenous BR contents gradually increased during persimmon fruit ripening. EBR treatment significantly increased both the content of water-soluble pectin and the activities of polygalacturonase, pectate lyase, and endo-1,4-beta-glucanase but significantly reduced the content of acid-soluble pectin and cellulose, resulting in rapid fruit softening. The EBR treatment also promoted ethylene production and respiration rate. In contrast, Brz treatment delayed persimmon fruit ripening. qRT-PCR analysis showed that DkPG1, DkPL1, DkPE2, DkEGase1, DkACO2, DkACS1, and DkACS2 were up-regulated (especially a 38-fold increase in DkEGase1) in the fruit of the EBR-treated group. These results suggest that BRs are involved in persimmon fruit ripening by influencing cell-wall-degrading enzymes and ethylene biosynthesis. Topics: Brassinosteroids; Cell Wall; Color; Diospyros; Ethylenes; Fruit; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Pectins; Plant Proteins | 2018 |
Abscisic acid is involved in root cell wall phosphorus remobilization independent of nitric oxide and ethylene in rice (Oryza sativa).
Abscisic acid (ABA) is a well-studied phytohormone demonstrated to be involved in sub-sets of stress responses in plants, such as iron (Fe) deficiency and phosphorus (P) deficiency in Arabidopsis. However, whether ABA is involved in P deficiency in rice has not been frequently studied. The present study was undertaken to investigate the mechanism underlying ABA-aggravated P deficiency in rice (Oryza sativa).. P deficiency decreased ABA accumulation rapidly (within 1 h) in the roots. Exogenous ABA negatively regulated root and shoot soluble P contents by decreasing pectin content, inhibiting P deficiency-induced increases in pectin methylesterase activity and expression of the phosphate transporter gene-OsPT6, thereby decreasing the re-utilization of P from the cell wall and its translocation to the shoot. Moreover, neither the nitric oxide (NO) donor sodium nitroprusside nor ethylene precursor 1-aminocyclopropane-1-carboxylic acid had any effect on ABA accumulation, and application of ABA or the ABA inhibitor fluridone also had no effect on NO production and ethylene emission.. Under P deficiency, NO levels increase as quickly as ABA levels decrease, to inhibit both the ABA-induced reduction of pectin contents for the re-utilization of cell wall P and the ABA-induced down-regulation of OsPT6 for the translocation of P from roots to shoots. Overall, our results provide novel information indicating that the reduction of ABA under P deficiency is a very important pathway in the re-utilization of cell wall P in rice under P-deficient conditions, which should be a very effective mechanism for plant survival under P deficiency stress for common agronomic practice. Topics: Abscisic Acid; Carboxylic Ester Hydrolases; Cell Wall; Ethylenes; Nitric Oxide; Oryza; Pectins; Phosphorus; Plant Growth Regulators; Plant Roots; Real-Time Polymerase Chain Reaction | 2018 |
Biochemical and physiological changes during fruit development and ripening of two sweet cherry varieties with different levels of cracking tolerance.
The aim of this study was to investigate the biochemical and metabolic changes, related to oxidative stress, ethylene and respiration, cell wall modification and primary metabolism, between a high ('Prime Giant') and a low ('Cristalina') cracking susceptible sweet cherry cultivar during growth and ripening. While cherries are referred as a non-climacteric fruit, our results show that an increase of endogenous ethylene production at earlier fruit developmental stages is parallel to colour development and softening during growth. Higher cracking susceptibility was clearly associated to a higher fruit growth rate and accompanied by an increase net CO Topics: Adaptation, Physiological; Biomarkers; Biomass; Cell Respiration; Ethylenes; Fructose; Fruit; Glucose; Hydrogen Peroxide; Malates; Malondialdehyde; Methyltransferases; Oxidative Stress; Pectins; Polygalacturonase; Prunus avium | 2017 |
Slow softening of Kanzi apples (Malus×domestica L.) is associated with preservation of pectin integrity in middle lamella.
Kanzi is a recently developed apple cultivar that has an extremely low ethylene production, and maintains its crispiness during ripening. To identify key determinants of the slow softening behaviour of Kanzi apples, a comparative analysis of pectin biochemistry and tissue fracture pattern during different ripening stages of Kanzi apples was performed against Golden Delicious, a rapid softening cultivar. While substantial pectin depolymerisation and solubilisation was observed during softening in Golden Delicious apples, no depolymerisation or increased solubilisation was observed in Kanzi apples. Moreover, tissue failure during ripening was mainly by cell breakage in Kanzi apples and, in contrast, by cell separation in Golden Delicious apples. Kanzi apples had lower activity of beta-galactosidase, with no decline in the extent of branching of the pectin chain. A sudden decrease in firmness observed during senescence in Kanzi apples was not due to middle lamella dissolution, as tissue failure still occurred by cell breakage. Topics: Cell Wall; Ethylenes; Fruit; Malus; Pectins; Plant Extracts | 2016 |
Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea.
ERF transcription factors play critical roles in plant immune responses. Here, we report the function of AtERF014, a nucleus-localized transcriptional activator, in Arabidopsis immunity. Expression of AtERF014 was induced by Pseudomonas syringae pv. tomato (Pst) and Botrytis cinerea (Bc). AtERF014-overexpressing (OE) plants displayed increased Pst resistance but decreased Bc resistance, whereas AtERF014-RNAi plants exhibited decreased Pst resistance but increased Bc resistance. After Pst infection, expression of salicylic acid (SA)-responsive genes AtPR1 and AtPR5 in AtERF014-OE plants and of a jasmonic acid/ethylene-responsive gene AtPDF1.2 in AtERF014-RNAi plants was intensified but expression of AtPDF1.2 in AtERF014-OE plants and of AtPR1 and AtPR5 in AtERF014-RNAi plants was weakened. After Bc infection, expression of AtPR1 and AtPR5 in AtERF014-OE plants was attenuated but expression of AtPR1, AtPR5 and AtPDF1.2 in AtERF014-RNAi plants was strengthened. Pathogen- and flg22-induced ROS burst, expression of PTI genes and SA-induced defense were partially suppressed in AtERF014-RNAi plants, whereas pathogen-induced ROS and flg22-induced immune response were strengthened in AtER014-OE plants. Altered expression of AtERR014 affected expression of pectin biosynthetic genes and pectin content in AtERF014-RNAi plants was decreased. These data demonstrate that AtERF014 acts as a dual regulator that differentially modulates immunity against Pst and Bc in Arabidopsis. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Defensins; Disease Resistance; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Pectins; Plant Diseases; Plant Immunity; Pseudomonas syringae; Salicylic Acid; Transcription Factors | 2016 |
The Chloroplast Protease AMOS1/EGY1 Affects Phosphate Homeostasis under Phosphate Stress.
Plastid intramembrane proteases in Arabidopsis (Arabidopsis thaliana) are involved in jasmonic acid biosynthesis, chloroplast development, and flower morphology. Here, we show that Ammonium-Overly-Sensitive1 (AMOS1), a member of the family of plastid intramembrane proteases, plays an important role in the maintenance of phosphate (P) homeostasis under P stress. Loss of function of AMOS1 revealed a striking resistance to P starvation. amos1 plants displayed retarded root growth and reduced P accumulation in the root compared to wild type (Col-0) under P-replete control conditions, but remained largely unaffected by P starvation, displaying comparable P accumulation and root and shoot growth under P-deficient conditions. Further analysis revealed that, under P-deficient conditions, the cell wall, especially the pectin fraction of amos1, released more P than that of wild type, accompanied by a reduction of the abscisic acid (ABA) level and an increase in ethylene production. By using an ABA-insensitive mutant, abi4, and applying ABA and ACC exogenously, we found that ABA inhibits cell wall P remobilization while ethylene facilitates P remobilization from the cell wall by increasing the pectin concentration, suggesting ABA can counteract the effect of ethylene. Furthermore, the elevated ABA level and the lower ethylene production also correlated well with the mimicked P deficiency in amos1 Thus, our study uncovers the role of AMOS1 in the maintenance of P homeostasis through ABA-antagonized ethylene signaling. Topics: Abscisic Acid; Arabidopsis; Arabidopsis Proteins; Cell Wall; Chloroplasts; Ethylenes; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Homeostasis; Metalloproteases; Mutation; Pectins; Phosphates; Plant Growth Regulators; Plant Roots; Plant Shoots; Reverse Transcriptase Polymerase Chain Reaction; Stress, Physiological | 2016 |
Novel insights of ethylene role in strawberry cell wall metabolism.
Due to its organoleptic and nutraceutical qualities, strawberry fruit (Fragaria x ananassa, Duch) is a worldwide important commodity. The role of ethylene in the regulation of strawberry cell wall metabolism was studied in fruit from Toyonoka cultivar harvested at white stage, when most changes associated with fruit ripening have begun. Fruit were treated with ethephon, an ethylene-releasing reagent, or with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action, maintaining a set of non-treated fruit as controls for each condition. Ethephon treated-fruit showed higher contents of hemicelluloses, cellulose and neutral sugars regarding controls, while 1-MCP-treated fruit showed a lower amount of those fractions. On the other hand, ethephon-treated fruit presented a lower quantity of galacturonic acid from ionically and covalently bound pectins regarding controls, while 1-MCP-treated fruit showed higher contents of those components. We also explored the ethylene effect over the mRNA accumulation of genes related to pectins and hemicelluloses metabolism, and a relationship between gene expression patterns and cell wall polysaccharides contents was shown. Moreover, we detected that strawberry necrotrophic pathogens growth more easily on plates containing cell walls from ethephon-treated fruit regarding controls, while a lower growth rate was observed when cell walls from 1-MCP treated fruit were used as the only carbon source, suggesting an effect of ethylene on cell wall structure. Around 60% of strawberry cell wall is made up of pectins, which in turns is 70% made by homogalacturonans. Our findings support the idea of a central role for pectins on strawberry fruit softening and a participation of ethylene in the regulation of this process. Topics: Carbohydrate Metabolism; Cell Wall; Cellulose; Ethylenes; Fragaria; Fruit; Host-Pathogen Interactions; Pectins; Plant Growth Regulators; Polysaccharides; RNA, Messenger | 2016 |
Sucrose delays senescence and preserves functional compounds in Asparagus officinalis L.
The high metabolic rate of harvested asparagus spears (Asparagus officinalis L.) causes rapid deterioration. To extend shelf life, we investigated the effect of sucrose treatment on asparagus during storage. Asparagus spears were treated with 3%, 5%, and 10% sucrose and stored at 2 °C for 20 h. Cellular respiration decreased, but other processes were unaltered by exogenous sucrose. The overall appearance of asparagus treated with 3% sucrose and stored at 2 °C for 18 days was rated as good and excellent, unlike that of untreated spears. Asparagus treated with sucrose maintained firmness for 15 days, while untreated spears lost firmness and showed increased water-soluble pectin content during storage. Carbohydrate levels were also higher in sucrose-treated than in control samples. Transcript levels of cell-wall-related genes, including xyloglucan endotransglycosylase (XET)1, XET2, and peroxidase (prx)1, prx2, and prx3 were upregulated by sucrose. Cyanidin 3-O-rutinoside and rutin levels immediately increased upon addition of sucrose and remained high relative to the control during storage. Thus, sucrose modulates asparagus cell wall components and maintains the functionality of important compounds during storage, thus effectively prolonging shelf life. Topics: Anthocyanins; Asparagus Plant; Carbohydrates; Cell Wall; Ethylenes; Food Quality; Gene Expression Regulation, Plant; Glycosyltransferases; Pectins; Peroxidase; Plant Proteins; Rutin; Sucrose | 2016 |
Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms.
Cold storage induces chilling injury (CI) disorders in peach fruit (woolliness/mealiness, flesh browning and reddening/bleeding) manifested when ripened at shelf life. To gain insight into the mechanisms underlying CI, we analyzed the transcriptome of 'Oded' (high tolerant) and 'Hermoza' (relatively tolerant to woolliness, but sensitive to browning and bleeding) peach cultivars at pre-symptomatic stages. The expression profiles were compared and validated with two previously analyzed pools (high and low sensitive to woolliness) from the Pop-DG population. The four fruit types cover a wide range of sensitivity to CI. The four fruit types were also investigated with the ROSMETER that provides information on the specificity of the transcriptomic response to oxidative stress.. We identified quantitative differences in a subset of core cold responsive genes that correlated with sensitivity or tolerance to CI at harvest and during cold storage, and also subsets of genes correlating specifically with high sensitivity to woolliness and browning. Functional analysis indicated that elevated levels, at harvest and during cold storage, of genes related to antioxidant systems and the biosynthesis of metabolites with antioxidant activity correlates with tolerance. Consistent with these results, ROSMETER analysis revealed oxidative stress in 'Hermoza' and the progeny pools, but not in the cold resistant 'Oded'. By contrast, cold storage induced, in sensitivity to woolliness dependant manner, a gene expression program involving the biosynthesis of secondary cell wall and pectins. Furthermore, our results indicated that while ethylene is related to CI tolerance, differential auxin subcellular accumulation and signaling may play a role in determining chilling sensitivity/tolerance. In addition, sugar partitioning and demand during cold storage may also play a role in the tolerance/sensitive mechanism. The analysis also indicates that vesicle trafficking, membrane dynamics and cytoskeleton organization could have a role in the tolerance/sensitive mechanism. In the case of browning, our results suggest that elevated acetaldehyde related genes together with the core cold responses may increase sensitivity to browning in shelf life.. Our data suggest that in sensitive fruit a cold response program is activated and regulated by auxin distribution and ethylene and these hormones have a role in sensitivity to CI even before fruit are cold stored. Topics: Acetaldehyde; Cell Wall; Cold Temperature; Ethylenes; Indoleacetic Acids; Pectins; Prunus persica; Reactive Oxygen Species; Transcriptome | 2015 |
Effects of cold storage and 1-methylcyclopropene treatments on ripening and cell wall degrading in rabbiteye blueberry (Vaccinium ashei) fruit.
The effect of postharvest 1-methylcyclopropene and/or cold storage application on texture quality parameters during storage was determined. The changes in fruit quality (including weight loss, firmness, total soluble solids content, and ethylene production), cell wall material (including water-soluble fraction, ethylenediaminetetraacetic acid-soluble fraction, Na2CO3-soluble fraction, 4% KOH-soluble fraction, and 14% KOH-soluble fraction), and cell wall hydrolase activities (including polygalacturonase, endo-1,4-beta-D-glucanase, pectinesterase, alpha-L-arabinofuranosidase, and beta-galactosidase) were periodically measured up to 25 days after postharvest treatments. The application of cold storage reduced weight loss, ethylene production, and delayed ripening of blueberry fruit. The inhibition of senescence was associated with suppressed increase in cell wall hydrolase activities and retarded solubilization of pectins and hemicelluloses. Furthermore, no obvious differences in firmness, weight loss, ethylene production, and cell wall hydrolase activities between fruits with or without 1-methylcyclopropene application were observed, while significant lower levels of the detected parameters were found in cold storage fruit compared with fruit stored in room temperature. Thus, cold storage can be viewed as an effective means to extend the shelf life of blueberry fruit. Topics: Analysis of Variance; Blueberry Plants; Carboxylic Ester Hydrolases; Cell Wall; Cold Temperature; Cyclopropanes; Ethylenes; Food Quality; Food Storage; Hydrolases; Pectins; Polygalacturonase; Polysaccharides; Time Factors | 2014 |
Cell wall modifications and ethylene-induced tolerance to non-chilling peel pitting in citrus fruit.
Non-chilling peel pitting (NCPP), a storage disorder resulting in the formation of depressed areas in the peel of many citrus cultivars, is reduced by ethylene treatments. We hypothesized that this effect may be associated with biochemical changes of cell wall components. Therefore, we extracted cell wall material from albedo and flavedo tissues of 'Navelate' oranges stored in air, conditioned with ethylene (2μLL(-1)) for 4 days and subsequently transferred to air, or continuously stored in an ethylene-enriched atmosphere (2μLL(-1)). Uronic acids and neutral sugars were extracted into five fractions enriched in specific wall polymers namely water-, CDTA-, Na2CO3-, and 1 and 4M KOH-soluble fractions. Pectin insolubilization was found in control fruit at long storage times. Ethylene treatments, alleviating NCPP, increased polyuronide solubility in the albedo and had a slight effect on the flavedo. Ethylene-treated fruit showed greater content of water-soluble neutral sugars and a larger proportion of hemicelluloses readily extractable with 1M KOH, with a concomitant reduction in the 4M KOH-soluble fraction. This suggests that the protective role of ethylene on NCPP is associated with an increased solubilization of the wall of albedo cells. Topics: Carbohydrate Metabolism; Carbohydrates; Cell Wall; Cellulose; Citrus sinensis; Cold Temperature; Ethylenes; Fruit; Pectins; Polysaccharides; Solubility; Uronic Acids | 2013 |
High-temperature conditioning induces chilling tolerance in mandarin fruit: a cell wall approach.
High-temperature conditioning (3 days at 37 °C and 95% relative humidity), which protects 'Fortune' mandarins from chilling injury (CI), manifested as pitting in the outer part of the peel (flavedo), was applied prior to cold storage (2 °C) in order to investigate the involvement of cell wall composition in the chilling tolerance of mandarins.. Both low-temperature storage and high-temperature conditioning barely modified the alcohol-insoluble substance (AIS) content or the degree of pectin esterification in the flavedo. Water-soluble pectins (WSP) were higher in heat-conditioned than in non-conditioned fruits at the onset of CI. In addition, the heat-conditioning treatment was able to increase chelator-soluble pectins (CSP) after short cold storage periods. Covalently bound polyuronides in alkali-soluble pectins (ASP) increased only in fruits with high incidence of CI. Cellulose and hemicellulose increased at 2 °C in both conditioned and non-conditioned fruits, indicating that these polysaccharides may be altered by low temperature but are not related to chilling-induced damage.. High-temperature conditioning may reduce chilling-induced flavedo pitting in 'Fortune' mandarin fruit by maintaining normal levels of WSP and increasing putative sites for calcium bridge formation within the cell wall, but not by inducing changes in other matrix cell wall components. Topics: Cell Wall; Cellulose; Citrus; Cold Temperature; Esterification; Ethylenes; Food Preservation; Food Storage; Fruit; Hot Temperature; Humidity; Pectins; Solubility; Uronic Acids | 2012 |
The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation.
High levels of ascorbic acid (AsA) in tomato fruits provide health benefits for humans and also play an important role in several aspects of plant life. Although AsA metabolism has been characterized in detail, the genetic mechanisms controlling AsA accumulation in tomatoes are poorly understood. The transcriptional control of AsA levels in fruits can be investigated by combining the advanced genetic and genomic resources currently available for tomato. A comparative transcriptomic analysis of fruit tissues was carried out on an introgression line containing a QTL promoting AsA accumulation in the fruit, using a parental cultivar with lower AsA levels as a reference.. Introgression line IL 12-4 (S. pennellii in a S. lycopersicum background) was selected for transcriptomic analysis because it maintained differences in AsA levels compared to the parental genotypes M82 and S. pennellii over three consecutive trials. Comparative microarray analysis of IL 12-4 and M82 fruits over a 2-year period allowed 253 differentially-expressed genes to be identified, suggesting that AsA accumulation in IL 12-4 may be caused by a combination of increased metabolic flux and reduced utilization of AsA. In particular, the upregulation of a pectinesterase and two polygalacturonases suggests that AsA accumulation in IL12-4 fruit is mainly achieved by increasing flux through the L-galactonic acid pathway, which is driven by pectin degradation and may be triggered by ethylene.. Based on functional annotation, gene ontology classification and hierarchical clustering, a subset of the 253 differentially-expressed transcripts was used to develop a model to explain the higher AsA content in IL 12-4 fruits in terms of metabolic flux, precursor availability, demand for antioxidants, abundance of reactive oxygen species and ethylene signaling. Topics: Ascorbic Acid; Carbohydrate Metabolism; Ethylenes; Fruit; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Glutathione; Humans; Pectins; Solanum lycopersicum | 2010 |
Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening.
The effects of nitric oxide (NO) on ethylene synthesis and softening of ripening-initiated banana slice were investigated. Fruit firmness, color, and contents of starch and acid-soluble pectin (ASP) were measured. In addition, ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) content, expression and activities of ACC synthase (ACS) and ACC oxidase (ACO), and activities of cell-wall-modifying enzymes, polygalacturonase (PG), pectin methylesterase (PME), and endo-beta-1,4-glucanase, were analyzed. Application of NO reduced ethylene production, inhibited degreening of the peel and delayed softening of the pulp. The decrease of ethylene production was associated with the reduction in the activity of ACO and the expression of the MA-ACO1 gene. Moreover, the NO-treated fruit showed a lower expression of the MA-ACS1 gene but higher ACS activity and ACC content. In addition, NO treatment decreased the activities of PG, PME, and endo-beta-1,4-glucanase and maintained higher contents of ASP and starch, which may account for the delay of softening. We proposed that the inhibition of ACO activity and transcription of gene MA-ACO1 by NO resulted in decreased ethylene synthesis and the delay of ripening of banana slice. Topics: Amino Acid Oxidoreductases; Enzyme Inhibitors; Ethylenes; Fruit; Gene Expression; Lyases; Musa; Nitric Oxide; Pectins; Starch | 2009 |
Ethylene-induced differential gene expression during abscission of citrus leaves.
The main objective of this work was to identify and classify genes involved in the process of leaf abscission in Clementina de Nules (Citrus clementina Hort. Ex Tan.). A 7 K unigene citrus cDNA microarray containing 12 K spots was used to characterize the transcriptome of the ethylene-induced abscission process in laminar abscission zone-enriched tissues and the petiole of debladed leaf explants. In these conditions, ethylene induced 100% leaf explant abscission in 72 h while, in air-treated samples, the abscission period started later and took 240 h. Gene expression monitored during the first 36 h of ethylene treatment showed that out of the 12 672 cDNA microarray probes, ethylene differentially induced 725 probes distributed as follows: 216 (29.8%) probes in the laminar abscission zone and 509 (70.2%) in the petiole. Functional MIPS classification and manual annotation of differentially expressed genes highlighted key processes regulating the activation and progress of the cell separation that brings about abscission. These included cell-wall modification, lipid transport, protein biosynthesis and degradation, and differential activation of signal transduction and transcription control pathways. Expression data associated with the petiole indicated the occurrence of a double defensive strategy mediated by the activation of a biochemical programme including scavenging ROS, defence and PR genes, and a physical response mostly based on lignin biosynthesis and deposition. This work identifies new genes probably involved in the onset and development of the leaf abscission process and suggests a different but co-ordinated and complementary role for the laminar abscission zone and the petiole during the process of abscission. Topics: Carrier Proteins; Cell Wall; Citrus; Ethylenes; Gene Expression; Hormones; Kinetics; Lignin; Oligonucleotide Array Sequence Analysis; Oxidative Stress; Pectins; Plant Growth Regulators; Plant Leaves; Plant Proteins | 2008 |
Ultraviolet radiation drives methane emissions from terrestrial plant pectins.
Recent studies demonstrating an in situ formation of methane (CH(4)) within foliage and separate observations that soil-derived CH(4) can be released from the stems of trees have continued the debate about the role of vegetation in CH(4) emissions to the atmosphere. Here, a study of the role of ultraviolet (UV) radiation in the formation of CH(4) and other trace gases from plant pectins in vitro and from leaves of tobacco (Nicotiana tabacum) in planta is reported. Plant pectins were investigated for CH(4 )production under UV irradiation before and after de-methylesterification and with and without the singlet oxygen scavenger 1,4-diazabicyclo[2.2.2]octane (DABCO). Leaves of tobacco were also investigated under UV irradiation and following leaf infiltration with the singlet oxygen generator rose bengal or the bacterial pathogen Pseudomonas syringae. Results demonstrated production of CH(4), ethane and ethylene from pectins and from tobacco leaves following all treatments, that methyl-ester groups of pectin are a source of CH(4), and that reactive oxygen species (ROS) arising from environmental stresses have a potential role in mechanisms of CH(4) formation. Rates of CH(4 )production were lower than those previously reported for intact plants in sunlight but the results clearly show that foliage can emit CH(4) under aerobic conditions. Topics: Ethane; Ethylenes; Methane; Nicotiana; Pectins; Plant Leaves; Reactive Oxygen Species; Sunlight; Ultraviolet Rays | 2008 |