pectins has been researched along with dichlobanil* in 4 studies
4 other study(ies) available for pectins and dichlobanil
Article | Year |
---|---|
2, 6-Dichlorobenzonitrile causes multiple effects on pollen tube growth beyond altering cellulose synthesis in Pinus bungeana Zucc.
Cellulose is an important component of cell wall, yet its location and function in pollen tubes remain speculative. In this paper, we studied the role of cellulose synthesis in pollen tube elongation in Pinus bungeana Zucc. by using the specific inhibitor, 2, 6-dichlorobenzonitrile (DCB). In the presence of DCB, the growth rate and morphology of pollen tubes were distinctly changed. The organization of cytoskeleton and vesicle trafficking were also disturbed. Ultrastructure of pollen tubes treated with DCB was characterized by the loose tube wall and damaged organelles. DCB treatment induced distinct changes in tube wall components. Fluorescence labeling results showed that callose, and acidic pectin accumulated in the tip regions, whereas there was less cellulose when treated with DCB. These results were confirmed by FTIR microspectroscopic analysis. In summary, our findings showed that inhibition of cellulose synthesis by DCB affected the organization of cytoskeleton and vesicle trafficking in pollen tubes, and induced changes in the tube wall chemical composition in a dose-dependent manner. These results confirm that cellulose is involved in the establishment of growth direction of pollen tubes, and plays important role in the cell wall construction during pollen tube development despite its lower quantity. Topics: Cellulose; Cytoskeleton; Endocytosis; Fluorescence; Germination; Glucans; Nitriles; Pectins; Pinus; Pollen Tube; Pyridinium Compounds; Quaternary Ammonium Compounds; Spectroscopy, Fourier Transform Infrared; Time Factors | 2013 |
Disruption of cellulose synthesis by 2,6-dichlorobenzonitrile affects the structure of the cytoskeleton and cell wall construction in Arabidopsis.
Cellulose is the major component of plant cell walls and is an important source of industrial raw material. Although cellulose biosynthesis is one of the most important biochemical processes in plant biology, the regulatory mechanisms of cellulose synthesis are still unclear. Here, we report that 2,6-dichlorobenzonitrile (DCB), an inhibitor of cellulose synthesis, inhibits Arabidopsis root development in a dose- and time-dependent manner. When treated with DCB, the plant cell wall showed altered cellulose distribution and intensity, as shown by calcofluor white and S4B staining. Moreover, pectin deposition was reduced in the presence of DCB when immunostained with the monoclonal antibody JIM5, which was raised against pectin epitopes. This result was confirmed using Fourier transform infrared (FTIR) analysis. Confocal microscopy revealed that the organisation of the microtubule cytoskeleton was significantly disrupted in the presence of low concentrations of DCB, whereas the actin cytoskeleton only showed changes with the application of high DCB concentrations. In addition, the subcellular dynamics of Golgi bodies labelled with N-ST-YFP and TGN labelled with VHA-a1-GFP were both partially blocked by DCB. Transmission electron microscopy indicated that the cell wall structure was affected by DCB, as were the Golgi bodies. Scanning electron microscopy showed changes in the organisation of cellulose microfibrils. These results suggest that the inhibition of cellulose synthesis by DCB not only induced changes in the chemical composition of the root cell wall and cytoskeleton structure, but also changed the distribution of cellulose microfibrils, implying that cellulose plays an important role in root development in Arabidopsis. Topics: Arabidopsis; Biological Transport; Cell Wall; Cellulose; Cytoskeleton; Dose-Response Relationship, Drug; Golgi Apparatus; Immunohistochemistry; Microfibrils; Microscopy, Confocal; Microscopy, Electron, Transmission; Nitriles; Pectins; Plant Cells; Plant Roots; Seeds; Spectroscopy, Fourier Transform Infrared; Time Factors | 2013 |
Habituation to thaxtomin A in hybrid poplar cell suspensions provides enhanced and durable resistance to inhibitors of cellulose synthesis.
Thaxtomin A (TA), a phytotoxin produced by the phytopathogen Streptomyces scabies, is essential for the development of potato common scab disease. TA inhibits cellulose synthesis but its actual mode of action is unknown. Addition of TA to hybrid poplar (Populus trichocarpa x Populus deltoides) cell suspensions can activate a cellular program leading to cell death. In contrast, it is possible to habituate hybrid poplar cell cultures to grow in the presence of TA levels that would normally induce cell death. The purpose of this study is to characterize TA-habituated cells and the mechanisms that may be involved in enhancing resistance to TA.. Habituation to TA was performed by adding increasing levels of TA to cell cultures at the time of subculture over a period of 12 months. TA-habituated cells were then cultured in the absence of TA for more than three years. These cells displayed a reduced size and growth compared to control cells and had fragmented vacuoles filled with electron-dense material. Habituation to TA was associated with changes in the cell wall composition, with a reduction in cellulose and an increase in pectin levels. Remarkably, high level of resistance to TA was maintained in TA-habituated cells even after being cultured in the absence of TA. Moreover, these cells exhibited enhanced resistance to two other inhibitors of cellulose biosynthesis, dichlobenil and isoxaben. Analysis of gene expression in TA-habituated cells using an Affymetrix GeneChip Poplar Genome Array revealed that durable resistance to TA is associated with a major and complex reprogramming of gene expression implicating processes such as cell wall synthesis and modification, lignin and flavonoid synthesis, as well as DNA and chromatin modifications.. We have shown that habituation to TA induced durable resistance to the bacterial toxin in poplar cells. TA-habituation also enhanced resistance to two other structurally different inhibitors of cellulose synthesis that were found to target different proteins. Enhanced resistance was associated with major changes in the expression of numerous genes, including some genes that are involved in DNA and chromatin modifications, suggesting that epigenetic changes might be involved in this process. Topics: Benzamides; Cell Nucleus; Cell Wall; Cells, Cultured; Cellulose; Dose-Response Relationship, Drug; Drug Resistance, Multiple; Gene Expression Profiling; Gene Expression Regulation, Plant; Herbicides; Hybridization, Genetic; Indoles; Microscopy, Confocal; Microscopy, Electron; Nitriles; Oligonucleotide Array Sequence Analysis; Pectins; Piperazines; Populus; Reverse Transcriptase Polymerase Chain Reaction; Time Factors; Vacuoles | 2010 |
Habituation and dehabituation to dichlobenil: simply the equivalent of Penélope's weaving and unweaving process?
The habituation of cell cultures to cellulose biosynthesis inhibitors constitutes a valuable method for learning more about the plasticity of plant cell wall composition and structure. The subculture of habituated cells in the absence of an inhibitor (dehabituation) offers complementary information: some habituation-associated modifications revert, whereas others remain, even after long-term (3-5 years) dehabituation processes. However, is dehabituation simply the opposite to the process of habituation, in the same way that the cloth woven by Penélope during the day was unwoven during the night? Principal Component Analysis applied to Fourier Transformed Infrared (FTIR) spectra of cell walls from dichlobenil-habituated and dehabituated bean cell lines has shown that dehabituation follows a different pathway to that of habituation. Principal component loadings show that dehabituated cells have more pectins, but that these display a lower degree of methyl-esterification, than those of habituated ones. Further analysis of cell walls focusing on the first steps of habituation would serve to identify which specific modifications in pectins are responsible to the fine modulation of cell wall architecture observed during the habituation/dehabituation process. Topics: Adaptation, Physiological; Cell Culture Techniques; Cell Wall; Cellulose; Esterification; Fabaceae; Herbicides; Nitriles; Pectins; Principal Component Analysis; Spectroscopy, Fourier Transform Infrared | 2009 |