pectins and cinnamaldehyde

pectins has been researched along with cinnamaldehyde* in 2 studies

Other Studies

2 other study(ies) available for pectins and cinnamaldehyde

ArticleYear
Inactivation of Listeria monocytogenes on ham and bologna using pectin-based apple, carrot, and hibiscus edible films containing carvacrol and cinnamaldehyde.
    Journal of food science, 2012, Volume: 77, Issue:7

    Edible films can be used as wrapping material on food products to reduce surface contamination. The incorporation of antimicrobials into edible films could serve as an additional barrier against pathogenic and spoilage microorganisms that contaminate food surfaces. The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde, incorporated into apple, carrot, and hibiscus-based edible films against Listeria monocytogenes on contaminated ham and bologna. Ham or bologna samples were inoculated with L. monocytogenes and dried for 30 min, then surface wrapped with edible films containing the antimicrobials at various concentrations. The inoculated, film-wrapped samples were stored at 4 °C. Samples were taken at day 0, 3, and 7 for enumeration of surviving L. monocytogenes by plating on appropriate media. Carvacrol films showed better antimicrobial activity than cinnamaldehyde films. Compared to control films without antimicrobials, films with 3% carvacrol induced 1 to 3, 2 to 3, and 2 to 3 log CFU/g reductions on ham and bologna at day 0, 3, and 7, respectively. Corresponding reductions with 1.5% carvacrol were 0.5 to 1, 1 to 1.5, and 1 to 2 logs, respectively. At day 7, films with 3% cinnamaldehyde reduced L. monocytogenes population by 0.5 to 1.5 and 0.5 to 1.0 logs on ham and bologna, respectively. Inactivation by apple films was greater than that by carrot or hibiscus films. Apple films containing 3% carvacrol reduced L. monocytogenes population on ham by 3 logs CFU/g on day 0 which was 1 to 2 logs greater than that by carrot and hibiscus films. Films were more effective on ham than on bologna. The food industry and consumers could use these films to control surface contamination by pathogenic microorganisms.. Antimicrobial edible, food-compatible film wraps prepared from apples, carrots, and hibiscus calyces can be used by the food industry to inactivate Listeria monocytogenes on widely consumed ready to eat meat products such as bologna and ham. This study provides a scientific basis for large-scale application of edible fruit- and vegetable-based antimicrobial films on foods to improve microbial food safety.

    Topics: Acrolein; Animals; Colony Count, Microbial; Consumer Product Safety; Cymenes; Daucus carota; Food Contamination; Food Microbiology; Food Packaging; Food Preservation; Hibiscus; Listeria monocytogenes; Malus; Meat Products; Monoterpenes; Pectins; Plant Extracts; Swine

2012
Edible apple film wraps containing plant antimicrobials inactivate foodborne pathogens on meat and poultry products.
    Journal of food science, 2009, Volume: 74, Issue:8

    Apple-based edible films containing plant antimicrobials were evaluated for their activity against pathogenic bacteria on meat and poultry products. Salmonella enterica or E. coli O157:H7 (10(7) CFU/g) cultures were surface inoculated on chicken breasts and Listeria monocytogenes (10(6) CFU/g) on ham. The inoculated products were then wrapped with edible films containing 3 concentrations (0.5%, 1.5%, and 3%) of cinnamaldehyde or carvacrol. Following incubation at either 23 or 4 degrees C for 72 h, samples were stomached in buffered peptone water, diluted, and plated for enumeration of survivors. The antimicrobial films exhibited concentration-dependent activities against the pathogens tested. At 23 degrees C on chicken breasts, films with 3% antimicrobials showed the highest reductions (4.3 to 6.8 log CFU/g) of both S. enterica and E. coli O157:H7. Films with 1.5% and 0.5% antimicrobials showed 2.4 to 4.3 and 1.6 to 2.8 log reductions, respectively. At 4 degrees C, carvacrol exhibited greater activity than did cinnamaldehyde. Films with 3%, 1.5%, and 0.5% carvacrol reduced the bacterial populations by about 3, 1.6 to 3, and 0.8 to 1 logs, respectively. Films with 3% and 1.5% cinnamaldehyde induced 1.2 to 2.8 and 1.2 to 1.3 log reductions, respectively. For L. monocytogenes on ham, carvacrol films induced greater reductions than did cinnamaldehyde films at all concentrations tested. In general, the reduction of L. monocytogenes on ham at 23 degrees C was greater than at 4 degrees C. Added antimicrobials had minor effects on physical properties of the films. The results suggest that the food industry and consumers could use these films as wrappings to control surface contamination by foodborne pathogenic microorganisms.

    Topics: Acrolein; Animals; Anti-Bacterial Agents; Chickens; Colony Count, Microbial; Cymenes; Escherichia coli O157; Food Handling; Food Microbiology; Food Packaging; Foodborne Diseases; Fruit; Glycerol; Malus; Meat; Monoterpenes; Pectins; Pigmentation; Salmonella enteritidis; Surface Properties; Swine

2009