pectins and araban

pectins has been researched along with araban* in 62 studies

Reviews

2 review(s) available for pectins and araban

ArticleYear
GH62 arabinofuranosidases: Structure, function and applications.
    Biotechnology advances, 2017, Nov-01, Volume: 35, Issue:6

    Motivated by industrial demands and ongoing scientific discoveries continuous efforts are made to identify and create improved biocatalysts dedicated to plant biomass conversion. α-1,2 and α-1,3 arabinofuranosyl specific α-l-arabinofuranosidases (EC 3.2.1.55) are debranching enzymes catalyzing hydrolytic release of α-l-arabinofuranosyl residues, which decorate xylan or arabinan backbones in lignocellulosic and pectin constituents of plant cell walls. The CAZy database classifies α-l-arabinofuranosidases in Glycoside Hydrolase (GH) families GH2, GH3, GH43, GH51, GH54 and GH62. Only GH62 contains exclusively α-l-arabinofuranosidases and these are of fungal and bacterial origin. Twenty-two GH62 enzymes out of 223 entries in the CAZy database have been characterized and very recently new knowledge was acquired with regard to crystal structures, substrate specificities, and phylogenetics, which overall provides novel insights into structure/function relationships of GH62. Overall GH62 α-l-arabinofuranosidases are believed to play important roles in nature by acting in synergy with several cell wall degrading enzymes and members of GH62 represent promising candidates for biotechnological improvements of biofuel production and in various biorefinery applications.

    Topics: Amino Acid Sequence; Biofuels; Glycoside Hydrolases; Hydrolysis; Lignin; Pectins; Phylogeny; Polysaccharides; Substrate Specificity; Xylans

2017
Structure and function of the primary cell walls of plants.
    Annual review of biochemistry, 1984, Volume: 53

    Topics: Cell Wall; Cellulose; Chemical Phenomena; Chemistry; Galactans; Glucans; Glycoproteins; Models, Molecular; Pectins; Phytoalexins; Plant Cells; Plant Extracts; Plant Growth Regulators; Plant Physiological Phenomena; Plant Proteins; Plants; Polysaccharides; Protease Inhibitors; Sesquiterpenes; Terpenes; Xylans

1984

Other Studies

60 other study(ies) available for pectins and araban

ArticleYear
Influence of Arabinan Fine Structure, Galacturonan Backbone Length, and Degree of Esterification on the Emulsifying Properties of Acid-Extracted Sugar Beet Pectins.
    Journal of agricultural and food chemistry, 2023, Feb-01, Volume: 71, Issue:4

    Sugar beet pectins (SBPs) are known for their emulsifying properties, but it is yet unknown which structural elements are most important for functionality. Recent results indicated that the arabinose content has a decisive influence, but the approach applied did not allow causality to be established. In this study, a mostly intact SBP was selectively modified and the obtained pectins were analyzed for their molecular structure and their emulsifying properties. De-esterification only resulted in a moderate increase in droplet size. The length of the pectin backbone only influenced the emulsifying properties when the homogalacturonan backbone was cleaved to a higher extent. By using different arabinan-modifying enzymes, it was demonstrated that both higher portions and chain lengths of arabinans positively influence the emulsifying properties of SBPs. Therefore, we were able to refine the structure-function relationships for acid-extracted SBPs, which can be used to optimize extraction conditions.

    Topics: Arabinose; Beta vulgaris; Esterification; Pectins

2023
Structure and immunological activity of an arabinan-rich acidic polysaccharide from Atractylodes lancea (Thunb.) DC.
    International journal of biological macromolecules, 2022, Feb-28, Volume: 199

    Topics: Atractylodes; Pectins; Phagocytosis; Polysaccharides

2022
Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening.
    Current biology : CB, 2022, 07-25, Volume: 32, Issue:14

    Stomata regulate plant water use and photosynthesis by controlling leaf gas exchange. They do this by reversibly opening the pore formed by two adjacent guard cells, with the limits of this movement ultimately set by the mechanical properties of the guard cell walls and surrounding epidermis.

    Topics: Arabidopsis; Pectins; Plant Stomata; Polysaccharides

2022
Characterization of an antioxidant pectic polysaccharide from Platycodon grandiflorus.
    International journal of biological macromolecules, 2021, Apr-01, Volume: 175

    Platycodonis Radix is widely used as homology of medicine and food in China; polysaccharides are thought to be one of its functional constituents. In this study, a pectic polysaccharide, PGP-I-I, was obtained from the root of the traditional medicine plant Platycodon grandiflorus through ion exchange chromatography and gel filtration. This was characterized being mainly composed of 1,5-α-L-arabinan and both arabinogalactan type I (AG-I) and II chains linked to rhamnogalacturonan I (RG-I) backbone linked to longer galacturonan chains. In vitro bioactivity study showed that PGP-I-I could restore the intestinal cellular antioxidant defense under the condition of hydrogen peroxide (H

    Topics: Animals; Antioxidants; Cell Line; Chromatography, Gel; Chromatography, Ion Exchange; Dietary Carbohydrates; Galactans; Hydrogen Peroxide; Pectins; Plant Extracts; Plant Roots; Platycodon; Polysaccharides; Swine

2021
Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides.
    Carbohydrate polymers, 2021, Jun-15, Volume: 262

    The contribution of ATR-FTIR spectroscopy to study cell wall polysaccharides (CWPs) was carefully investigated. The region 1800-800 cm

    Topics: Cell Wall; Cellulose; Galactans; Monosaccharides; Pectins; Plants; Polysaccharides; Principal Component Analysis; Spectroscopy, Fourier Transform Infrared

2021
Elucidation of the microstructure of an immuno-stimulatory polysaccharide purified from Korean red ginseng using sequential hydrolysis.
    International journal of biological macromolecules, 2021, Sep-01, Volume: 186

    The elucidation of the structural characteristics of polysaccharides from natural sources is generally difficult owing to their structural complexity and heterogeneity. In our previous study, an immuno-stimulatory polysaccharide (RGP-AP-I) was isolated from Korean red ginseng (Panax ginseng C.A. Meyer). The present study aims to elucidate the structural characteristics of RGP-AP-I. Sequential enzyme hydrolysis was performed using four specific glycosylases, and chemical cleavage via β-elimination was carried out to determine the fine structure of RGP-AP-I. The degraded fragments were chemically identified using various chromatographic and spectrometric analyses, including HPLC-UVD, GC-MS, and tandem mass spectrometry. The results indicated that RGP-AP-I comprises a rhamnogalacturonan I (RG-I) backbone with repeating disaccharide units [→2)-Rhap-(1 → 4)-GalAp-(1→] and three side chains substituted at the C(O)4 position of the rhamnose residue in the backbone. The three side chains were identified as a highly branched α-(1 → 5)-arabinan, a branched β-(1 → 4)-galactan, and an arabino-β-3,6-galactan. Our results represent the first findings regarding the fine structure of the immuno-stimulatory polysaccharide RG-AP-I isolated from red ginseng.

    Topics: Adjuvants, Immunologic; Chemical Fractionation; Galactans; Glycoside Hydrolases; Hydrolysis; Molecular Structure; Panax; Pectins; Polysaccharides; Structure-Activity Relationship

2021
A pectin methyltransferase modulates polysaccharide dynamics and interactions in Arabidopsis primary cell walls: Evidence from solid-state NMR.
    Carbohydrate polymers, 2021, Oct-15, Volume: 270

    Plant cell walls contain cellulose embedded in matrix polysaccharides. Understanding carbohydrate structures and interactions is critical to the production of biofuel and biomaterials using these natural resources. Here we present a solid-state NMR study of cellulose and pectin in

    Topics: Arabidopsis; Cell Wall; Cellulose; Magnetic Resonance Spectroscopy; Methyltransferases; Pectins; Polysaccharides

2021
Determination of chemical structure of pea pectin by using pectinolytic enzymes.
    Carbohydrate polymers, 2020, Mar-01, Volume: 231

    The chemical structure of pea pectin was delineated using pectin-degrading enzymes and biochemical methods. The molecular weight of the pea pectin preparation was 488,000, with 50 % arabinose content, and neutral sugar side chains attached to approximately 60 % of the rhamnose residues in rhamnogalacturonan-I (RG-I). Arabinan, an RG-I side chain, was highly branched, and the main chain was comprised of α-1,5-l-arabinan. Galactose and galactooligosaccharides were attached to approximately 35 % of the rhamnose residues in RG-I. Long chain β-1,4-galactan was also present. The xylose substitution rate in xylogalacturonan (XGA) was 63 %. The molar ratio of RG-I/homogalacturonan (HG)/XGA in the backbone of the pea pectin was approximately 3:3:4. When considering neutral sugar side chain content (arabinose, galactose, and xylose), the molar ratio of RG-I/HG/XGA regions in the pea pectin was 7:1:2. These data will help understand the properties of pea pectin.

    Topics: Arabinose; Galactans; Galactose; Glycoside Hydrolases; Hexuronic Acids; Molecular Structure; Pectins; Pisum sativum; Polysaccharides; Rhamnose; Xylose

2020
Dietary fibre profiles of Turkish Tombul hazelnut (Corylus avellana L.) and hazelnut skin.
    Food chemistry, 2020, Jun-30, Volume: 316

    Dietary fibre (DF) profiles of natural hazelnut, roasted hazelnut and hazelnut skin were analyzed. Insoluble (IDF) and soluble (SDF) DFs were examined for monosaccharide and glycosyl-linkage compositions using gas chromatography-mass spectrometry (GC-MS). Total DF contents of natural hazelnut, roasted hazelnut, and hazelnut skin were 17.8, 15.4, and 69.8%, respectively; majority of which (>96%) were water-insoluble. IDFs of natural and roasted hazelnuts were composed of cellulose (~49%), pectic polysaccharides (~30%), and xyloglucans (~15%), whereas that of hazelnut skin made up lignin (~55%) and fibre polysaccharides (cellulose, pectic polysaccharides, and xyloglucans, ~45%). Unlike the ones from other sources, pectic polysaccharides in IDFs had lower proportion of smooth region and higher proportion of hairy region that is heavily branched with arabinan and galactan side chains. Xyloglucans were also densely branched with monomeric and/or dimeric side chains. SDFs of the samples were composed of heavily branched heteromannans (~60%), slightly branched pectic polysaccharides (~25%), and xyloglucans possessing monomeric side chains (~5%). These results suggest that hazelnut is rich in DFs that have potential to improve large bowel function and hazelnut skin, a byproduct of hazelnut roasting process, could be utilized for the production of functional carbohydrates having prebiotic capacities.

    Topics: Corylus; Dietary Fiber; Galactans; Gas Chromatography-Mass Spectrometry; Glucans; Pectins; Polysaccharides; Turkey; Xylans

2020
Dietary fibres from guavira pomace, a co-product from fruit pulp industry: Characterization and cellular antioxidant activity.
    Food research international (Ottawa, Ont.), 2020, Volume: 132

    Exotic fruits and their co-products may be valuable sources of antioxidant dietary fibres (DF) which are useful for food industry and human health. In this study, we aimed to characterize DF obtained from guavira fruit pomace and investigate its antioxidant potential employing TEAC assay as well as a cell model. The DF were chemically characterized as containing arabinan, highly-methoxylated homogalacturonan and arabinogalactan. The DF-containing fraction (CPW) presented ABTS free radical scavenger activity. MTT and DCFH-DA assay were performed to assess, respectively, changes in cell viability and the potential intracellular antioxidant activity against H

    Topics: Animals; Antioxidants; Cell Survival; Dietary Fiber; Fibroblasts; Fruit; Galactans; Hydrogen Peroxide; Mice; NIH 3T3 Cells; Oxidative Stress; Pectins; Polysaccharides

2020
Structure-activity relationship of Citrus segment membrane RG-I pectin against Galectin-3: The galactan is not the only important factor.
    Carbohydrate polymers, 2020, Oct-01, Volume: 245

    Topics: Blood Proteins; Cell Membrane; Cell Wall; Citrus; Fruit; Galactans; Galectins; Humans; Hydrolysis; MCF-7 Cells; Pectins; Plant Cells; Polysaccharides; Protein Binding; Solubility; Structure-Activity Relationship; Water

2020
Cell type-specific gene expression underpins remodelling of cell wall pectin in exocarp and cortex during apple fruit development.
    Journal of experimental botany, 2019, 11-18, Volume: 70, Issue:21

    In apple (Malus×domestica) fruit, the different layers of the exocarp (cuticle, epidermis, and hypodermis) protect and maintain fruit integrity, and resist the turgor-driven expansion of the underlying thin-walled cortical cells during growth. Using in situ immunolocalization and size exclusion epitope detection chromatography, distinct cell type differences in cell wall composition in the exocarp were revealed during apple fruit development. Epidermal cell walls lacked pectic (1→4)-β-d-galactan (associated with rigidity), whereas linear (1→5)-α-l-arabinan (associated with flexibility) was exclusively present in the epidermal cell walls in expanding fruit and then appeared in all cell types during ripening. Branched (1→5)-α-l-arabinan was uniformly distributed between cell types. Laser capture microdissection and RNA sequencing (RNA-seq) were used to explore transcriptomic differences controlling cell type-specific wall modification. The RNA-seq data indicate that the control of cell wall composition is achieved through cell-specific gene expression of hydrolases. In epidermal cells, this results in the degradation of galactan side chains by possibly five β-galactosidases (BGAL2, BGAL7, BGAL10, BGAL11, and BGAL103) and debranching of arabinans by α-arabinofuranosidases AF1 and AF2. Together, these results demonstrate that flexibility and rigidity of the different cell layers in apple fruit during development and ripening are determined, at least in part, by the control of cell wall pectin remodelling.

    Topics: Cell Wall; Epitopes; Fruit; Galactans; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Malus; Molecular Weight; Pectins; Plant Epidermis; Polysaccharides; Solubility; Transcriptome

2019
Structural characterisation of polysaccharides from roasted hazelnut skins.
    Food chemistry, 2019, Jul-15, Volume: 286

    Two polysaccharide fractions sequentially extracted with water 1W and alkali 1A, were isolated from the hazelnut skins. The monosaccharide composition together with the FTIR and NMR analyses, indicated that both fractions are formed from a mixture of polysaccharides. The fraction 1W consists of methyl-esterified pectic polysaccharide with rhamnogalacturonan I blocks, branching with arabinose side chains, and with 1,5-, 1,3,5-arabinan and galactan polysaccharides. The fraction 1A is a mixture of deesterified rhamnogalacturonan I and 1,5-, 1,3,5-arabinan and 4-O-Me-glucuronoxylan polysaccharides. The presence of unsaturated galacturonic acid and the heterogeneity of the molecular weights, which M

    Topics: Corylus; Food Technology; Galactans; Hexuronic Acids; Magnetic Resonance Spectroscopy; Molecular Weight; Monosaccharides; Pectins; Polysaccharides; Spectroscopy, Fourier Transform Infrared

2019
UDP-arabinopyranose mutase gene expressions are required for the biosynthesis of the arabinose side chain of both pectin and arabinoxyloglucan, and normal leaf expansion in Nicotiana tabacum.
    Journal of plant research, 2018, Volume: 131, Issue:2

    Plant cell walls are composed of polysaccharides such as cellulose, hemicelluloses, and pectins, whose location and function differ depending on plant type. Arabinose is a constituent of many different cell wall components, including pectic rhamnogalacturonan I (RG-I) and II (RG-II), glucuronoarabinoxylans (GAX), and arabinoxyloglucan (AXG). Arabinose is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. The UDP-arabinopyranose mutases (UAMs) have been demonstrated to convert UDP-arabinopyranose (UDP-Arap) to UDP-arabinofuranose (UDP-Araf) in rice (Oryza sativa L.). The UAMs have been implicated in polysaccharide biosynthesis and developmental processes. Arabinose residues could be a component of many polysaccharides, including branched (1→5)-α-arabinans, arabinogalactans in pectic polysaccharides, and arabinoxyloglucans, which are abundant in the cell walls of solanaceous plants. Therefore, to elucidate the role of UAMs and arabinan side chains, we analyzed the UAM RNA interference transformants in tobacco (Nicotiana tabacum L.). The tobacco UAM gene family consists of four members. We generated RNAi transformants (NtUAM-KD) to down-regulate all four of the UAM members. The NtUAM-KD showed abnormal leaf development in the form of a callus-like structure and many holes in the leaf epidermis. A clear reduction in the pectic arabinan content was observed in the tissue of the NtUAM-KD leaf. The arabinose/xylose ratio in the xyloglucan-rich cell wall fraction was drastically reduced in NtUAM-KD. These results suggest that UAMs are required for Ara side chain biosynthesis in both RG-I and AXG in Solanaceae plants, and that arabinan-mediated cell wall networks might be important for normal leaf expansion.

    Topics: Arabinose; Gene Expression; Glucans; Intramolecular Transferases; Nicotiana; Pectins; Plant Leaves; Polysaccharides; Uridine Diphosphate Sugars

2018
Gastroprotective effects and structural characterization of a pectic fraction isolated from Artemisia campestris subsp maritima.
    International journal of biological macromolecules, 2018, Volume: 107, Issue:Pt B

    The aim of this study was to investigate the chemical structure and biological activity of a pectic fraction isolated from the aerial parts of A. campestris L. subsp. maritima Arcangeli. The chemical and spectroscopic analyses of the pectic fraction (ACP-E10) demonstrated that ACP-E10 was composed of homogalacturonan (HG) (60%) and rhamnogalacturonan-I (RG-I) (29%) regions. Side chains of the RG-I included mainly branched arabinans and type II arabinogalactans (AG-II). The molar mass of ACP-E10 determined by HPSEC-MALLS was 16,600g/mol. ACP-E10 was evaluated for its gastroprotective effect against ethanol-induced gastric lesions in rats. Oral pretreatment of animals with ACP-E10 (0.3, 3 and 30mg/kg) significantly reduced gastric lesions by 77±7.9%, 55±11.1% and 65±11.8%. ACP-E10 also maintained mucus and glutathione (GSH) contents in the gastric mucosa. In addition, ACP-E10 demonstrated antioxidant activity in vitro by the DPPH assay. These results demonstrated that the pectin from A. campestris had significant gastroprotective effects in vivo, which were likely attributable to their capacity to increase the protective defenses of gastric mucosa.

    Topics: Animals; Anti-Ulcer Agents; Artemisia; Ethanol; Gastric Mucosa; Humans; Mucoproteins; Pectins; Phytotherapy; Plant Leaves; Plant Proteins; Polysaccharides; Rats; Stomach Ulcer

2018
Anti-fatigue activity of an arabinan-rich pectin from acerola (Malpighia emarginata).
    International journal of biological macromolecules, 2018, Apr-01, Volume: 109

    Topics: Animals; Biomarkers; Brain; Cell Respiration; Fruit; Lipid Peroxidation; Malpighiaceae; Mice; Muscles; Oxidative Stress; Pectins; Polysaccharides; Reactive Oxygen Species

2018
Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (Cicer arietinum L.) cotyledons.
    Plant, cell & environment, 2018, Volume: 41, Issue:9

    Chickpea (Cicer arietinum L.) is an important nutritionally rich legume crop that is consumed worldwide. Prior to cooking, desi chickpea seeds are most often dehulled and cleaved to release the split cotyledons, referred to as dhal. Compositional variation between desi genotypes has a significant impact on nutritional quality and downstream processing, and this has been investigated mainly in terms of starch and protein content. Studies in pulses such as bean and lupin have also implicated cell wall polysaccharides in cooking time variation, but the underlying relationship between desi chickpea cotyledon composition and cooking performance remains unclear. Here, we utilized a variety of chemical and immunohistological assays to examine details of polysaccharide composition, structure, abundance, and location within the desi chickpea cotyledon. Pectic polysaccharides were the most abundant cell wall components, and differences in monosaccharide and glycosidic linkage content suggest both environmental and genetic factors contribute to cotyledon composition. Genotype-specific differences were identified in arabinan structure, pectin methylesterification, and calcium-mediated pectin dimerization. These differences were replicated in distinct field sites and suggest a potentially important role for cell wall polysaccharides and their underlying regulatory machinery in the control of cooking time in chickpea.

    Topics: Cell Wall; Cellulose; Cicer; Cooking; Cotyledon; Flour; Genotype; Monosaccharides; Pectins; Polysaccharides; Time Factors

2018
The multi-ligand binding first family 35 Carbohydrate Binding Module (CBM35) of Clostridium thermocellum targets rhamnogalacturonan I.
    Archives of biochemistry and biophysics, 2018, 09-15, Volume: 654

    Topics: Amino Acid Sequence; Bacterial Proteins; Binding Sites; Calcium; Calorimetry; Circular Dichroism; Clostridium thermocellum; Crystallography, X-Ray; Electrophoresis, Polyacrylamide Gel; Galactans; Ligands; Mutagenesis, Site-Directed; Pectins; Polysaccharides; Protein Binding; Scattering, Small Angle; Sequence Homology, Amino Acid

2018
Non-covalent interaction between ferulic acid and arabinan-rich pectic polysaccharide from rapeseed meal.
    International journal of biological macromolecules, 2017, Volume: 103

    The sorption capacity of arabinan-rich pectic polysaccharide (ARPP) onto ferulic acid (FA) was investigated using equilibrium dialysis assays. UV and FT-IR spectra showed that FA was successfully adsorbed by ARPP. The effects of temperature, pH, buffer concentration, NaCl, and ethanol on sorption were investigated. Sorption variable optimization was examined by response surface methodology. The order of influence of each factor in affecting the sorption capacity was temperature>pH>buffer concentration. The maximum sorption yield was 363.92±18.37μg/mg at 36.8°C, pH 5.26, and a buffer concentration of 0.09M. Langmuir, Freundlich, and Temkin models were used to fit the experimental data under the optimized conditions. The Freundlich model showed the closest fit with an R

    Topics: Adsorption; Brassica rapa; Coumaric Acids; Ethanol; Hydrogen-Ion Concentration; Osmolar Concentration; Pectins; Polysaccharides; Sodium Chloride; Temperature

2017
Comparison of celery (Apium graveolens L.) collenchyma and parenchyma cell wall polysaccharides enabled by solid-state (13)C NMR.
    Carbohydrate research, 2016, Volume: 420

    Collenchyma cells with their thickened walls are one of specific mechanical support tissues for plants, while parenchyma cells are thin walled and serve multiple functions. The parenchyma tissue is what you enjoy eating, while collenchyma, because of its fibrous nature, is not so attractive. Celery is a useful model for comparing the cell walls (CWs) of the two cell types such as collenchyma and parenchyma. However, to date, the structural characteristics of collenchyma and parenchyma cell walls from the same plant have not been compared. Monosaccharide composition suggested the collenchyma cell walls contained less pectin but more hemicellulose in comparison to parenchyma. High-resolution solid-state NMR spectra of highly mobile pectins revealed that the arabinan signals were more evident in the collenchyma spectrum, while galactan showed a much stronger resonance in the parenchyma spectrum. In addition, methyl esterified and non-esterified galacturonic acid signals were observed in parenchyma CWs, but only the latter one appeared in the collenchyma. The ratio of cellulose surface/interior obtained from CP/MAS spectra for collenchyma suggested the cellulose microfibrils were ~2.4 nm, while in the parenchyma, these were somewhat larger. X-ray diffraction indicated the size of the cellulose microfibrils were the same for both types of CWs.

    Topics: Apium; Cell Wall; Magnetic Resonance Spectroscopy; Pectins; Polysaccharides; X-Ray Diffraction

2016
Arabinogalactan proteins and arabinan pectins abound in the specialized matrices surrounding female gametes of the fern Ceratopteris richardii.
    Planta, 2016, Volume: 243, Issue:4

    Both male and female gametes of archegoniates are highly specialized cells surrounded by an extraprotoplasmic matrix rich in AGPs, which are speculated to facilitate development and gamete fusion through Ca 2+) oscillations. An additional layer, the egg envelope, forms around the egg periphery, except at the fertilization pore, and contains arabinose-rich polymers that presumably impart flexibility for the rapidly growing zygote and embryo. The abundant AGPs and arabinan pectins associated with the eggs of C. richardii not only are integral to development, fertilization, and early embryogenesis, but also may be involved in desiccation tolerance important to the survival of the reproductive gametophyte. A defining feature of gametogenesis in archegoniates is the deposition of a special matrix outside of the plasmalemma of both egg and sperm cells that displaces the primary cell wall away from the protoplasm. It is within this matrix that gamete differentiation occurs. In leptosporangiate ferns, maturation of the egg cell involves the deposition of a second specialized wall, the so-called egg envelope that surrounds the cell except at the fertilization pore, a narrow site where gamete fusion takes place. We provide the first conclusive evidence of the macromolecular constituents in the unique structures surrounding fern egg cells before and after fertilization. To test the hypotheses that the egg extracellular matrix contains arabinogalactan proteins (AGPs) as does the sperm cell matrix, and that cell wall polysaccharides, especially pectins, are components of the egg envelope, we examined the expression patterns of AGPs and cell wall constituents during oogenesis in Ceratopteris richardii. Utilizing histochemical stains for callose, cellulose and AGPs coupled with immunogold localizations employing a suite of monoclonal antibodies to cell wall components (JIM13, JIM8, LM2, LM5, LM6, LM19, LM20 and anticallose), we demonstrate that AGPs, but not pectins, are abundant in the matrix around egg cells and degrading neck canal and ventral canal cells during archegonial development. A striking finding is that both AGPs and (1,5)-α-L-arabinan pectin epitopes are principle components of the egg envelope before and after fertilization, suggesting that they are important in both egg maturation and gamete fusion.

    Topics: Antibodies, Monoclonal; Cell Wall; Epitopes; Extracellular Matrix; Glucans; Microscopy, Electron, Transmission; Mucoproteins; Ovule; Pectins; Plant Proteins; Polysaccharides; Pteridaceae

2016
NMR Spectroscopic Profiling of Arabinan and Galactan Structural Elements.
    Journal of agricultural and food chemistry, 2016, Dec-21, Volume: 64, Issue:50

    Pectic arabinans and galactans presumably affect the physiological and technological properties of plant cell walls and dietary fiber. Their complex structures are usually analyzed by time-consuming methods, which are based on chemical cleavage to monomers. To gain more detailed insights into the arabinan and galactan structures, a time-efficient approach based on enzymatic cleavage and two-dimensional NMR spectroscopy was developed. Heteronuclear single quantum coherence spectroscopy (HSQC) marker signals were evaluated for various structural elements, and relative response factors were determined, allowing a semiquantitative estimation of the structural composition. The method was applied to analyze different insoluble plant materials and soluble polysaccharides. It was demonstrated that the developed approach yielded comparable information about various structural elements that can also be detected by using the conventional methylation analysis. However, by using the NMR method, additional structural information, such as the anomeric configuration of the monomers, is obtained, demonstrating the value of this novel approach.

    Topics: Dietary Fiber; Galactans; Gas Chromatography-Mass Spectrometry; Magnetic Resonance Spectroscopy; Methylation; Pectins; Polysaccharides

2016
Neutral Pectin side chains of Amaranth (Amaranthus hypochondriacus) contain long, partially branched Arabinans and short galactans, both with terminal arabinopyranoses.
    Journal of agricultural and food chemistry, 2015, Jan-21, Volume: 63, Issue:2

    Amaranth is a pseudocereal of high nutritional value, including a high dietary fiber content. Amaranth dietary fiber was suggested to contain large amounts of neutral rhamnogalacturonan I side chains. In this study, endo-arabinanase and endo-galactanase were used to liberate arabinan and galactan oligosaccharides from amaranth fiber. The liberated oligosaccharides were identified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and HPLC-MS(n) using standard compounds, which were isolated from amaranth, sugar beet, potato, and red clover sprouts and characterized by one- and two-dimensional NMR spectroscopy. It was demonstrated that insoluble amaranth arabinans have linear and branched areas, with the O-3 position being the dominant branching point. Minor amounts of branches at position O-2 and double substitution were also found. Amaranth arabinans were also demonstrated to contain terminal α-(1→5)-linked l-arabinopyranose units. In addition, it was evidenced that galactans from amaranth seeds are composed of β-(1→4)-linked d-galactopyranose units, which can also be terminated with l-arabinopyranose units. In direct comparison to structural elucidation of amaranth fiber by using methylation analysis, the advantage of the enzymatic approach over methylation analysis was demonstrated.

    Topics: Amaranthus; Dietary Fiber; Galactans; Molecular Structure; Pectins; Plant Extracts; Polysaccharides; Seeds

2015
Arabinan-rich pectic polysaccharides from buriti (Mauritia flexuosa): an Amazonian edible palm fruit.
    Carbohydrate polymers, 2015, May-20, Volume: 122

    Primary cell wall polysaccharides from aqueous extract of buriti fruit pulp (Mauritia flexuosa, an exotic tropical palm) were isolated and characterized. After freeze-thaw and α-amylase treatments, extracted polysaccharides were purified by sequential ultrafiltration through membranes. Two homogeneous fractions were obtained, SBW-100R and SBW-30R (Mw of 126 kDa and 20 kDa, respectively). Monosaccharide composition, methylation and (13)C NMR analysis showed that fraction SBW-100R contained a (1 → 5)-linked arabinan, branched at O-3 and O-2 positions, linked to a type I rhamnogalacturonan. Low amounts of these polymers were also present in fraction SBW-30R according to (13)C NMR analysis and monosaccharide composition. However, a high methyl esterified homogalacturonan (HG) was present in higher proportions. These results reinforce previous findings present in literature data which indicate that pectic polysaccharides are found in high amounts in primary cell walls of palms, which are commelinid monocotyledons.

    Topics: Arecaceae; Cell Wall; Fruit; Magnetic Resonance Spectroscopy; Molecular Structure; Monosaccharides; Pectins; Plant Extracts; Polysaccharides

2015
Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns.
    BMC plant biology, 2015, Feb-18, Volume: 15

    While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering plants, ferns have been largely neglected in cell wall comparative studies.. To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of lycophytes. All major matrix glycans were present as indicated by epitope detection with some variations in abundance. Pectic HG epitopes were of low abundance in lycophytes and the CCRC-M1 fucosylated xyloglucan epitope was largely absent from the Aspleniaceae. The LM15 XXXG epitope was detected widely across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns.. The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans.

    Topics: Antibodies, Monoclonal; Cell Wall; Epitopes; Ferns; Fluorescent Antibody Technique, Indirect; Galactans; Glucans; Mannans; Microarray Analysis; Organ Specificity; Pectins; Phloem; Phylogeny; Plant Extracts; Polysaccharide-Lyases; Polysaccharides; Xylans

2015
Binding of arabinan or galactan during cellulose synthesis is extensive and reversible.
    Carbohydrate polymers, 2015, Aug-01, Volume: 126

    Arabinans and galactans are major components of the side-chains of pectin in plant cell walls. In order to understand how pectin side-chains interact with cellulose, in this work we studied the interaction of de-branched arabinan (from sugar beet) and linear galactan (from potato) during the synthesis of cellulose by Gluconacetobacter xylinus (ATCC 53524) to mimic in muro assembly. The binding studies reveal that arabinan and galactan are able to bind extensively (>200mg/g of cellulose) during cellulose deposition, and more than pectin (from apple) in the absence of calcium. (13)C NMR revealed that associated arabinan, galactan or apple pectin molecules were neither rigid nor affected cellulose crystallinity, and there was no apparent change in cellulose architecture as reflected in scanning electron micrographs. De-binding of arabinan, galactan or apple pectin occurred as a result of washing, indicating a reversible binding to cellulose, which was modelled in terms of a surface-controlled process. Implications for structural models of primary plant cell walls and possible roles for cellulose binding of arabinan- and galactan-rich pectins in biological processes are discussed.

    Topics: Cell Wall; Cellulose; Galactans; Gluconacetobacter xylinus; Pectins; Polysaccharides

2015
Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa WILLD.).
    Phytochemistry, 2015, Volume: 116

    In plants belonging to the order of Caryophyllales, pectic neutral side chains can be substituted with ferulic acid. The ability of ferulic acid to form intra- and/or intermolecular polysaccharide cross-links by dimerization was shown by the isolation and characterization of diferulic acid oligosaccharides from monocotyledonous plants. In this study, two diferulic acid oligosaccharides were isolated from the enzymatic hydrolyzate of seeds of the dicotyledonous pseudocereal quinoa by gel permeation chromatography and preparative HPLC and unambiguously identified by LC-MS(2) and 1D/2D NMR spectroscopy. The isolated oligosaccharides are comprised of 5-5- and 8-O-4-diferulic acid linked to the O2-position of the nonreducing residue of two (1→5)-linked arabinobioses. To get insight into the structure and the degree of phenolic acid substitution of the diferuloylated polysaccharides, polymeric sugar composition, glycosidic linkages, and polysaccharide-bound monomeric phenolic acids and diferulic acids were analyzed. This study demonstrates that diferulic acids are involved into intramolecular and/or intermolecular cross-linking of arabinan chains and may have a major impact on cell wall architecture of quinoa and other dicotyledonous plants of the order of Caryophyllales.

    Topics: Bolivia; Cell Wall; Chenopodium quinoa; Cinnamates; Coumaric Acids; Nuclear Magnetic Resonance, Biomolecular; Pectins; Polysaccharides; Seeds

2015
The Deconstruction of Pectic Rhamnogalacturonan I Unmasks the Occurrence of a Novel Arabinogalactan Oligosaccharide Epitope.
    Plant & cell physiology, 2015, Volume: 56, Issue:11

    Rhamnogalacturonan I (RGI) is a pectic polysaccharide composed of a backbone of alternating rhamnose and galacturonic acid residues with side chains containing galactose and/or arabinose residues. The structure of these side chains and the degree of substitution of rhamnose residues are extremely variable and depend on species, organs, cell types and developmental stages. Deciphering RGI function requires extending the current set of monoclonal antibodies (mAbs) directed to this polymer. Here, we describe the generation of a new mAb that recognizes a heterogeneous subdomain of RGI. The mAb, INRA-AGI-1, was produced by immunization of mice with RGI oligosaccharides isolated from potato tubers. These oligomers consisted of highly branched RGI backbones substituted with short side chains. INRA-AGI-1 bound specifically to RGI isolated from galactan-rich cell walls and displayed no binding to other pectic domains. In order to identify its RGI-related epitope, potato RGI oligosaccharides were fractionated by anion-exchange chromatography. Antibody recognition was assessed for each chromatographic fraction. INRA-AGI-1 recognizes a linear chain of (1→4)-linked galactose and (1→5)-linked arabinose residues. By combining the use of INRA-AGI-1 with LM5, LM6 and INRA-RU1 mAbs and enzymatic pre-treatments, evidence is presented of spatial differences in RGI motif distribution within individual cell walls of potato tubers and carrot roots. These observations raise questions about the biosynthesis and assembly of pectin structural domains and their integration and remodeling in cell walls.

    Topics: Animals; Cell Wall; Daucus carota; Epitopes; Galactans; Mice; Pectins; Plant Roots; Polysaccharides; Solanum tuberosum

2015
Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development.
    Plant biotechnology journal, 2014, Volume: 12, Issue:4

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.

    Topics: Cell Wall; Chromosome Segregation; Crosses, Genetic; Gene Dosage; Monosaccharides; Pectins; Phenotype; Plant Infertility; Plant Tubers; Plants, Genetically Modified; Pollen; Polysaccharides; Solanum tuberosum; Transformation, Genetic; Transgenes

2014
A novel GH43 α-l-arabinofuranosidase of Penicillium chrysogenum that preferentially degrades single-substituted arabinosyl side chains in arabinan.
    Enzyme and microbial technology, 2014, May-10, Volume: 58-59

    We previously described three α-l-arabinofuranosidases (ABFs) secreted by Penicillium chrysogenum 31B. Here, we purified a fourth ABF, termed PcABF43A, from the culture filtrate. The molecular mass of the enzyme was estimated to be 31kDa. PcABF43A had the highest activity at 35°C and at around pH 5. The enzyme activity was strong on sugar beet l-arabinan but weak on debranched arabinan and arabinoxylan. Low molecular-mass substrates such as p-nitrophenyl α-l-arabinofuranoside, α-1,5-l-arabinooligosaccharides, and branched arabinotriose were highly resistant to the action of PcABF43A. (1)H-NMR analysis revealed that PcABF43A hydrolyzed arabinosyl side chains linked to C-2 or C-3 of single-substituted arabinose residues in l-arabinan. Reports concerning enzymes specific for l-arabinan are quite limited. Pcabf43A cDNA encoding PcABF43A was isolated by in vitro cloning. The deduced amino acid sequence of the enzyme shows high similarities with the sequences of other fungal uncharacterized proteins. Semi-quantitative RT-PCR analysis indicated that the Pcabf43A gene was constitutively expressed in P. chrysogenum 31B at a low level, although the expression was induced with pectic components such as l-arabinose, l-rhamnose, and d-galacturonic acid. Analysis of enzymatic characteristics of PcABF43A, GH51 ABF (AFQ1), and GH54 ABF (AFS1) from P. chrysogenum suggested that PcABF43A and AFS1 function as debranching enzymes and AFQ1 plays a role of saccharification in the degradation of l-arabinan by this fungus.

    Topics: Arabinose; Culture Media; Enzyme Induction; Escherichia coli; Fungal Proteins; Genes, Fungal; Glycoside Hydrolases; Isoenzymes; Molecular Sequence Data; Molecular Weight; Nuclear Magnetic Resonance, Biomolecular; Pectins; Penicillium chrysogenum; Plant Extracts; Polysaccharides; Recombinant Fusion Proteins; Sequence Alignment; Sequence Homology, Nucleic Acid; Substrate Specificity

2014
Developmental changes in guard cell wall structure and pectin composition in the moss Funaria: implications for function and evolution of stomata.
    Annals of botany, 2014, Volume: 114, Issue:5

    In seed plants, the ability of guard cell walls to move is imparted by pectins. Arabinan rhamnogalacturonan I (RG1) pectins confer flexibility while unesterified homogalacturonan (HG) pectins impart rigidity. Recognized as the first extant plants with stomata, mosses are key to understanding guard cell function and evolution. Moss stomata open and close for only a short period during capsule expansion. This study examines the ultrastructure and pectin composition of guard cell walls during development in Funaria hygrometrica and relates these features to the limited movement of stomata.. Developing stomata were examined and immunogold-labelled in transmission electron microscopy using monoclonal antibodies to five pectin epitopes: LM19 (unesterified HG), LM20 (esterified HG), LM5 (galactan RG1), LM6 (arabinan RG1) and LM13 (linear arabinan RG1). Labels for pectin type were quantitated and compared across walls and stages on replicated, independent samples.. Walls were four times thinner before pore formation than in mature stomata. When stomata opened and closed, guard cell walls were thin and pectinaceous before the striated internal and thickest layer was deposited. Unesterified HG localized strongly in early layers but weakly in the thick internal layer. Labelling was weak for esterified HG, absent for galactan RG1 and strong for arabinan RG1. Linear arabinan RG1 is the only pectin that exclusively labelled guard cell walls. Pectin content decreased but the proportion of HG to arabinans changed only slightly.. This is the first study to demonstrate changes in pectin composition during stomatal development in any plant. Movement of Funaria stomata coincides with capsule expansion before layering of guard cell walls is complete. Changes in wall architecture coupled with a decrease in total pectin may be responsible for the inability of mature stomata to move. Specialization of guard cells in mosses involves the addition of linear arabinans.

    Topics: Biological Evolution; Bryopsida; Cell Wall; Pectins; Plant Stomata; Polysaccharides

2014
Structural studies of arabinan-rich pectic polysaccharides from Abies sibirica L. Biological activity of pectins of A. sibirica.
    Carbohydrate polymers, 2014, Nov-26, Volume: 113

    Highly branched arabinan-rich pectic polysaccharides, containing 84% of arabinose, was extracted from wood greenery of Abies sibirica L. The structure of arabinan was studied by the 1D and 2D NMR spectroscopy. The macromolecule backbone was represented mainly by RG-I (molar ratio GalA:Rha ∼ 1.3:1) patterns with high degree of rhamnose branching. Side chains were comprised of 1,5-linked α-L-Araf residues (the major part of polymer mass), 1,3,5-di-O- and 1,2,3,5-tri-O-linked α-L-Araf residues, confirming the presence of highly branched 1,5-α-L-arabinan. Although most L-Araf were in α-anomeric form, minor terminal β-L-Araf-(1 →... was detected. 1,4-β-D-linked Galp residues found in the side chains account for minor AG-I or 1,4-galactan, as compared to arabinan. A tentative structure was proposed. Polysaccharides obtained from Siberian fir greenery were screened for biological activity. Galacturonan had a strongest stimulating effect on germination and growth rate of seeds, germs and roots of Triticum aestivum, Avena sativa, and Secale cereale.

    Topics: Abies; Pectins; Polysaccharides; Triticum

2014
Changes in the distribution of cell wall polysaccharides in early fruit pericarp and ovule, from fruit set to early fruit development, in tomato (Solanum lycopersicum).
    Journal of plant research, 2013, Volume: 126, Issue:5

    During fruit development in tomato (Solanum lycopersicum), cell proliferation and rapid cell expansion occur after pollination. Cell wall synthesis, alteration, and degradation play important roles during early fruit formation, but cell wall composition and the extent of cell wall synthesis/degradation are poorly understood. In this study, we used immunolocalization with a range of specific monoclonal antibodies to examine the changes in cell wall composition during early fruit development in tomato. In exploring early fruit development, the -1 day post-anthesis (DPA) ovary and fruits at 1, 3, and 5 DPA were sampled. Paraffin sections were prepared for staining and immunolabeling. The 5 DPA fruit showed rapid growth in size and an increase in both methyl-esterified pectin and de-methyl-esterified pectin content in the pericarp, suggesting rapid synthesis and de-methyl esterification of pectin during this growth period. Labeling of pectic arabinan with LM6 antibody and galactan with LM5 antibody revealed abundant amounts of both, with unique distribution patterns in the ovule and premature pericarp. These results suggest the presence of rapid pectin metabolism during the early stages of fruit development and indicate a unique distribution of pectic galactan and arabinan within the ovule, where they may be involved in embryogenesis.

    Topics: Antibodies, Monoclonal; Biological Transport; Carbohydrate Metabolism; Cell Wall; Epitopes; Fruit; Galactans; Gene Expression Regulation, Plant; Ovule; Pectins; Pollination; Polysaccharides; Solanum lycopersicum

2013
Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.
    Plant & cell physiology, 2013, Volume: 54, Issue:8

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

    Topics: Antibodies, Monoclonal; Arabidopsis; Arabidopsis Proteins; Biomechanical Phenomena; Cell Wall; Epitopes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Inflorescence; Mutation; Organ Specificity; Pectins; Pentosyltransferases; Plant Epidermis; Plant Stems; Plants, Genetically Modified; Polysaccharides; Seedlings; Stress, Mechanical

2013
Multi-scale spatial heterogeneity of pectic rhamnogalacturonan I (RG-I) structural features in tobacco seed endosperm cell walls.
    The Plant journal : for cell and molecular biology, 2013, Volume: 75, Issue:6

    Plant cell walls are complex configurations of polysaccharides that fulfil a diversity of roles during plant growth and development. They also provide sets of biomaterials that are widely exploited in food, fibre and fuel applications. The pectic polysaccharides, which comprise approximately a third of primary cell walls, form complex supramolecular structures with distinct glycan domains. Rhamnogalacturonan I (RG-I) is a highly structurally heterogeneous branched glycan domain within the pectic supramolecule that contains rhamnogalacturonan, arabinan and galactan as structural elements. Heterogeneous RG-I polymers are implicated in generating the mechanical properties of cell walls during cell development and plant growth, but are poorly understood in architectural, biochemical and functional terms. Using specific monoclonal antibodies to the three major RG-I structural elements (arabinan, galactan and the rhamnogalacturonan backbone) for in situ analyses and chromatographic detection analyses, the relative occurrences of RG-I structures were studied within a single tissue: the tobacco seed endosperm. The analyses indicate that the features of the RG-I polymer display spatial heterogeneity at the level of the tissue and the level of single cell walls, and also heterogeneity at the biochemical level. This work has implications for understanding RG-I glycan complexity in the context of cell-wall architectures and in relation to cell-wall functions in cell and tissue development.

    Topics: Cell Wall; Endosperm; Epitope Mapping; Galactans; Nicotiana; Pectins; Polysaccharides

2013
Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal.
    Carbohydrate polymers, 2013, Nov-06, Volume: 98, Issue:2

    To enable structural characteristics of individual cell wall polysaccharides from rapeseed (Brassica napus) meal (RSM) to be studied, polysaccharide fractions were sequentially extracted. Fractions were analysed for their carbohydrate (linkage) composition and polysaccharide structures were also studied by enzymatic fingerprinting. The RSM fractions analysed contained pectic polysaccharides: homogalacturonan in which 60% of the galacturonic acid residues are methyl-esterified, arabinan branched at the O-2 position and arabinogalactan mainly type II. This differs from characteristics previously reported for Brassica campestris meal, another rapeseed cultivar. Also, in the alkali extracts hemicelluloses were analysed as xyloglucan both of the XXGG- and XXXG-type decorated with galactosyl, fucosyl and arabinosyl residues, and as xylan with O-methyl-uronic acid attached. The final residue after extraction still contained xyloglucan and remaining (pectic) polysaccharides next to cellulose, showing that the cell wall matrix of RSM is very strongly interconnected.

    Topics: Brassica napus; Carbohydrate Sequence; Cell Wall; Chromatography, Ion Exchange; Enzyme Assays; Galactans; Glucans; Hexuronic Acids; Molecular Sequence Data; Pectins; Polysaccharides; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Xylans

2013
Cell wall polysaccharide distribution in Sandersonia aurantiaca flowers using immuno-detection.
    Protoplasma, 2012, Volume: 249, Issue:3

    The localization of cell wall polysaccharides of the fused petals of monocotyledonous Sandersonia aurantiaca flowers has been identified using antibodies directed to pectin and xyloglucan epitopes and detection by fluorescence microscopy. Cross sections of the petal tissue were taken from cut flowers in bud and at various stages of maturity and senescence. Patterns of esterification in pectin backbones were identified by JIM5 and 2F4 labelling. Pectic galactan and arabinan side branches were detected by LM5 and LM6, respectively, while fucosylated xyloglucan was identified by CCRC-M1. The labelling patterns highlighted compositional differences between walls of the outer/inner epidermis compared to the spongy parenchyma cells of the interior mesophyll for fucosylated xyloglucan and arabinan. Partially esterified homogalacturonan was present in the junction zones of the outer epidermis and points of contact between cells of the mesophyll, and persisted throughout senescence. Pectic galactans were ubiquitous in the outer and inner epidermal cell walls and walls of the interior mesophyll at flower opening, whereas pectic arabinan was found predominantly in the epidermal cells. Galactan was lost from walls of all cells as flowers began to senesce, while fucosylated xyloglucan appeared to increase over this time. Such differences in the location of polysaccharides and the timing of changes suggest distinct combinations of certain polysaccharides offer mechanical and rheological advantages that may assist with flower opening and senescence.

    Topics: Cell Wall; Flowers; Galactans; Magnoliopsida; Microscopy, Fluorescence; Pectins; Polysaccharides

2012
ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta.
    Planta, 2012, Volume: 236, Issue:1

    Glycosyltransferase complexes are known to be involved in plant cell wall biosynthesis, as for example in cellulose. It is not known to what extent such complexes are involved in biosynthesis of pectin as well. To address this question, work was initiated on ARAD1 (ARABINAN DEFICIENT 1) and its close homolog ARAD2 of glycosyltransferase family GT47. Using bimolecular fluorescence complementation, Förster resonance energy transfer and non-reducing gel electrophoresis, we show that ARAD1 and ARAD2 are localized in the same Golgi compartment and form homo-and heterodimeric intermolecular dimers when expressed transiently in Nicotiana benthamiana. Biochemical analysis of arad2 cell wall or fractions hereof showed no difference in the monosaccharide composition, when compared with wild type. The double mutant arad1 arad2 had an arad1 cell wall phenotype and overexpression of ARAD2 did not complement the arad1 phenotype, indicating that ARAD1 and ARAD2 are not redundant enzymes. To investigate the cell wall structure of the mutants in detail, immunohistochemical analyses were carried out on arad1, arad2 and arad1 arad2 using the arabinan-specific monoclonal antibody LM13. In roots, the labeling pattern of arad2 was distinct from both that of wild type, arad1 and arad1 arad2. Likewise, in epidermal cell walls of inflorescence stems, LM13 binding differed between arad2 and WILD TYPE, arad1 or arad1 arad2. Altogether, these data show that ARAD2 is associated with arabinan biosynthesis, not redundant with ARAD1, and that the two glycosyltransferases may function in complexes held together by disulfide bridges.

    Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Cell Wall; Disulfides; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Genes, Plant; Genetic Variation; Genotype; Glycosyltransferases; Mutation; Nicotiana; Pectins; Pentosyltransferases; Plant Growth Regulators; Plants, Genetically Modified; Polysaccharides; Sequence Alignment; Transformation, Genetic

2012
Simultaneous in vivo truncation of pectic side chains.
    Transgenic research, 2009, Volume: 18, Issue:6

    Despite the wide occurrence of pectin in nature only a few source materials have been used to produce commercial pectins. One of the reasons for this is that many plant species contain pectins with high levels of neutral sugar side chains or that are highly substituted with acetyl or other groups. These modifications often prevent gelation, which has been a major functional requirement of commercial pectins until recently. We have previously shown that modification of pectin is possible through heterologous expression of pectin degrading enzymes in planta. To test the effect of simultaneous modification of the two main neutral pectic side chains in pectic rhamnogalacturonan I (RGI), we constitutively expressed two different enzymes in Arabidopsis thaliana that would either modify the galactan or the arabinan side chains, or both side chains simultaneously. Our analysis showed that the simultaneous truncation of arabinan and galactan side chains is achievable and does not severely affect the growth of Arabidopsis thaliana.

    Topics: Arabidopsis; Galactans; Pectins; Plants, Genetically Modified; Polysaccharide-Lyases; Polysaccharides

2009
Sequential cell wall transformations in response to the induction of a pedicel abscission event in Euphorbia pulcherrima (poinsettia).
    The Plant journal : for cell and molecular biology, 2008, Volume: 54, Issue:6

    Alterations in the detection of cell wall polysaccharides during an induced abscission event in the pedicel of Euphorbia pulcherrima (poinsettia) have been determined using monoclonal antibodies and Fourier transform infrared (FT-IR) microspectroscopy. Concurrent with the appearance of a morphologically distinct abscission zone (AZ) on day 5 after induction, a reduction in the detection of the LM5 (1-->4)-beta-D-galactan and LM6 (1-->5)-alpha-L-arabinan epitopes in AZ cell walls was observed. Prior to AZ activation, a loss of the (1-->4)-beta-D-galactan and (1-->5)-alpha-L-arabinan epitopes was detected in cell walls distal to the AZ, i.e. in the to-be-shed organ. The earliest detected change, on day 2 after induction, was a specific loss of the LM5 (1-->4)-beta-D-galactan epitope from epidermal cells distal to the region where the AZ would form. Such alteration in the cell walls was an early, pre-AZ activation event. An AZ-associated de-esterification of homogalacturonan (HG) was detected in the AZ and distal area on day 7 after induction. The FT-IR analysis indicated that lignin and xylan were abundant in the AZ and that lower levels of cellulose, arabinose and pectin were present. Xylan and xyloglucan epitopes were detected in the cell walls of both the AZ and also the primary cell walls of the distal region at a late stage of the abscission process, on day 7 after induction. These observations indicate that the induction of an abscission event results in a temporal sequence of cell wall modifications involving the spatially regulated loss, appearance and/or remodelling of distinct sets of cell wall polymers.

    Topics: Antibodies, Monoclonal; Arabinose; Cell Wall; Cellulose; Epitope Mapping; Epitopes; Euphorbia; Flowers; Galactans; Glucans; Lignin; Pectins; Plant Epidermis; Polysaccharides; Spectroscopy, Fourier Transform Infrared; Xylans

2008
Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation.
    Journal of bacteriology, 2008, Volume: 190, Issue:12

    The extracellular depolymerization of arabinopolysaccharides by microorganisms is accomplished by arabinanases, xylanases, and galactanases. Here, we characterize a novel endo-alpha-1,5-l-arabinanase (EC 3.2.1.99) from Bacillus subtilis, encoded by the yxiA gene (herein renamed abn2) that contributes to arabinan degradation. Functional studies by mutational analysis showed that Abn2, together with previously characterized AbnA, is responsible for the majority of the extracellular arabinan activity in B. subtilis. Abn2 was overproduced in Escherichia coli, purified from the periplasmic fraction, and characterized with respect to substrate specificity and biochemical and physical properties. With linear-alpha-1,5-l-arabinan as the preferred substrate, the enzyme exhibited an apparent K(m) of 2.0 mg ml(-1) and V(max) of 0.25 mmol min(-1) mg(-1) at pH 7.0 and 50 degrees C. RNA studies revealed the monocistronic nature of abn2. Two potential transcriptional start sites were identified by primer extension analysis, and both a sigma(A)-dependent and a sigma(H)-dependent promoter were located. Transcriptional fusion studies revealed that the expression of abn2 is stimulated by arabinan and pectin and repressed by glucose; however, arabinose is not the natural inducer. Additionally, trans-acting factors and cis elements involved in transcription were investigated. Abn2 displayed a control mechanism at a level of gene expression different from that observed with AbnA. These distinct regulatory mechanisms exhibited by two members of extracellular glycoside hydrolase family 43 (GH43) suggest an adaptative strategy of B. subtilis for optimal degradation of arabinopolysaccharides.

    Topics: Arabinose; Bacillus subtilis; Bacterial Proteins; DNA Mutational Analysis; Gene Expression Regulation, Bacterial; Glucose; Glycoside Hydrolases; Molecular Sequence Data; Pectins; Polysaccharides; Recombinant Proteins; Substrate Specificity; Transcription, Genetic

2008
Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.
    Journal of experimental botany, 2007, Volume: 58, Issue:7

    The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.

    Topics: Beta vulgaris; Cell Fractionation; Cell Wall; Cellulose; Galactans; Microfibrils; Models, Biological; Pectins; Polysaccharides; Solanum tuberosum

2007
Structural ripening-related changes of the arabinan-rich pectic polysaccharides from olive pulp cell walls.
    Journal of agricultural and food chemistry, 2007, Aug-22, Volume: 55, Issue:17

    In this study, the structural features and ripening-related changes that occur in the arabinan-rich pectic polysaccharides highly enmeshed in the cellulosic matrix of the olive pulp fruit were evaluated. These pectic polysaccharides, obtained from two consecutive harvests at green, cherry, and black ripening stages, account for 11-19% of the total pectic polysaccharides found in the olive pulp cell walls and were previously shown to occur as calcium chelating dimers. On the basis of the 13C NMR, (1H, 13C) gHSQC, 2D COSYPR, and (1H,13C) gHMBC carbon and proton resonances of the variously linked arabinosyl residues, we propose a tentative structure. This structure is particularly characterized by T-beta-Araf (1-->5)-linked to (1-->3,5)-Araf residues and by the occurrence of branched and linear blocks in the arabinan backbone. Methylation analysis showed that these pectic polysaccharides of black olives have more arabinan side chains, which were shorter (less (1-->5)-Araf), highly branched (more (1-->3,5)-Araf), and with shorter side chains (fewer (1-->3)-Araf) than those of green and cherry olives. Quantitative 13C NMR data indicated that these modifications involved the disappearance of the characteristic terminally linked beta-Araf residue of the arabinans. This odd feature can be used as a diagnostic tool in the evaluation of the stage of ripening of this fruit, as well as a marker for the presence of olive pulp in matrices containing pectic polysaccharides samples.

    Topics: Cell Wall; Fruit; Magnetic Resonance Spectroscopy; Methylation; Olea; Pectins; Polysaccharides

2007
Enzymatic fingerprinting of Arabidopsis pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis (PACE).
    Planta, 2006, Volume: 224, Issue:1

    Plant cell wall polysaccharides vary in quantity and structure between different organs and during development. However, quantitative analysis of individual polysaccharides remains challenging, and relatively little is known about any such variation in polysaccharides in organs of the model plant Arabidopsis thaliana. We have analysed plant cell wall pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis. By highly specific enzymatic digestion of a polysaccharide in a cell wall preparation, a unique fingerprint of short oligosaccharides was produced. These oligosaccharides gave quantitative and structural information on the original polysaccharide chain. We analysed enzyme-accessible polygalacturonan (PGA), linear beta(1,4) galactan and linear alpha(1,5) arabinan in several organs of Arabidopsis: roots, young leaves, old leaves, lower and upper inflorescence stems, seeds and callus. We found that this PGA constitutes a high proportion of cell wall material (CWM), up to 15% depending on the organ. In all organs, between 60 and 80% of the PGA was highly esterified in a blockwise fashion, and surprisingly, dispersely esterified PGA was hardly detected. We found enzyme-accessible linear galactan and arabinan are both present as a minor polysaccharide in all the organs. The amount of galactan ranged from ~0.04 to 0.25% of CWM, and linear arabinan constituted between 0.015 and 0.1%. Higher levels of galactan correlated with expanding tissues, supporting the hypothesis that this polysaccharide is involved in wall extension. We show by analysis of mur4 that the methods and results presented here also provide a basis for studies of pectic polysaccharides in Arabidopsis mutants.

    Topics: Arabidopsis; Arabidopsis Proteins; Carbohydrate Epimerases; Cell Wall; Electrophoresis, Polyacrylamide Gel; Galactans; Hydrolases; Pectins; Plant Leaves; Plant Roots; Plant Stems; Polysaccharides; Seeds

2006
Distribution of pectic epitopes in cell walls of the sugar beet root.
    Planta, 2005, Volume: 222, Issue:2

    Immunolabelling techniques with antibodies specific to partially methyl-esterified homogalacturonan (JIM5: unesterified residues flanked by methylesterified residues. JIM7: methyl-esterified residues flanked by unesterified residues), a blockwise de-esterified homogalacturonan (2F4), 1,4-galactan (LM5) and 1,5-arabinan (LM6) were used to map the distribution of pectin motifs in cell walls of sugar beet root (Beta vulgaris). PME and alkali treatments of sections were used in conjunction with JIM5-7 and 2F4. The JIM7 epitope was abundant and equally distributed in all cells. In storage parenchyma, the JIM5 epitope was restricted to some cell junctions and the lining of intercellular spaces while in vascular tissues it occurred at cell junctions in some phloem walls and in xylem derivatives. After secondary wall formation, the JIM5 epitope was restricted to inner cell wall regions between secondary thickenings. The 2F4 epitope was not detected without de-esterification treatment. PME treatments prior to the use of 2F4 indicated that HG at cell corners was not acetylated. The LM5 epitope was mainly present in the cambial zone and when present in storage parenchyma, it was restricted to the wall region closest to the plasma membrane. The LM6 epitope was widely distributed throughout primary walls but was more abundant in bundles than in medullar ray tissue and storage parenchyma. These data show that the occurrence of oligosaccharide motifs of pectic polysaccharides are spatially regulated in sugar beet root cell walls and that the spatial patterns vary between cell types suggesting that structural variants of pectic polymers are involved in the modulation of cell wall properties.

    Topics: Antibodies, Monoclonal; Beta vulgaris; Cell Wall; Epitopes; Galactans; Pectins; Plant Roots; Polysaccharides

2005
Conformation and mobility of the arabinan and galactan side-chains of pectin.
    Phytochemistry, 2005, Volume: 66, Issue:15

    The function of the arabinan and galactan side-chains of pectin remains unknown. We describe 13C NMR experiments designed to yield spectra from the most mobile polymer components of hydrated cell walls isolated from a range of plant species. In pectin-rich cell walls, these corresponded to the pectic side-chains. The arabinan side-chains were in general more mobile than the galactans, but the long galactan side-chains of potato pectin showed high mobility. Due to motional line-narrowing effects these arabinan and galactan chains gave 13C NMR spectra of higher resolution than has previously been observed from 'solid' biopolymers. These spectra were similar to those reported for the arabinan and galactan polymers in the solution state, implying time-averaged conformations resembling those found in solution. The mobility of the highly esterified galacturonan in citrus cell walls overlapped with the lower end of the mobility range characteristic of the pectic side-chains. The cellulose-rich cell walls of flax phloem fibres gave spectra of low intensity corresponding to mobile type II arabinogalactans. Cell walls from oat coleoptiles appeared to contain no polymers as mobile as the pectic arabinans and galactans in primary cell walls of the other species examined. These properties of the pectic side-chains suggest a role in interacting with water.

    Topics: Avena; Carbohydrate Conformation; Citrus; Flax; Galactans; Magnetic Resonance Spectroscopy; Onions; Pectins; Plant Proteins; Polysaccharides; Protein Conformation; Solanum tuberosum

2005
Sugar beet (Beta vulgaris) pectins are covalently cross-linked through diferulic bridges in the cell wall.
    Phytochemistry, 2005, Volume: 66, Issue:24

    Arabinan and galactan side chains of sugar beet pectins are esterified by ferulic acid residues that can undergo in vivo oxidative reactions to form dehydrodiferulates. After acid and enzymatic degradation of sugar beet cell walls and fractionation of the solubilized products by hydrophobic interaction chromatography, three dehydrodiferulate-rich fractions were isolated. The structural identification of the different compounds present in these fractions was performed by electrospray-ion trap-mass spectrometry (before and after (18)O labeling) and high-performance anion-exchange chromatography. Several compounds contained solely Ara (terminal or alpha-1-->5-linked-dimer) and dehydrodiferulate. The location of the dehydrodiferulate was assigned in some cases to the O-2 and in others to the O-5 of non-reducing Ara residues. One compound contained Gal (beta-1-->4-linked-dimer), Ara (alpha-1-->5-linked-dimer) and dehydrodiferulate. The location of the dehydrodiferulate was unambiguously assigned to the O-2 of the non-reducing Ara residue and O-6 of the non-reducing Gal residue. These results provide direct evidence that pectic arabinans and galactans are covalently cross-linked (intra- or inter-molecularly) through dehydrodiferulates in sugar beet cell walls. Molecular modeling was used to compute and structurally characterize the low energy conformations of the isolated compounds. Interestingly, the conformations of the dehydrodiferulate-bridged arabinan and galactan fragments selected from an energetic criterion, evidenced very nice agreement with the experimental occurrence of the dehydrodiferulated pectins. The present work combines for the first time intensive mass spectrometry data and molecular modeling to give structural relevance of a molecular cohesion between rhamnogalacturonan fragments.

    Topics: Beta vulgaris; Carbohydrate Conformation; Carbohydrate Sequence; Cell Wall; Coumaric Acids; Galactans; Mass Spectrometry; Models, Molecular; Molecular Sequence Data; Pectins; Polysaccharides

2005
Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits.
    Carbohydrate research, 2004, Apr-28, Volume: 339, Issue:6

    After removal of the mucilage with water at room temperature, pectic polysaccharides were solubilized from Opuntia ficus-indica fruit skin, by sequential extraction with water at 60 degrees C (WSP) and EDTA solution at 60 degrees C (CSP). Polysaccharides with neutral sugar content of 0.48 and 0.36 mol/mol galacturonic acid residue were obtained, respectively, in the WSP and CSP extracts. These pectic polysaccharides were de-esterified and fractionated by anion-exchange chromatography, yielding for each extract five fractions, which were thereafter purified by size-exclusion chromatography. Two of these purified fractions were characterized by sugar analysis combined with methylation and reduction-methylation analysis. The study was then supported by (1)H and (13)C NMR spectroscopy. The results showed that the water-soluble fraction WSP3 and the EDTA soluble fraction CSP3, consisted of a disaccharide repeating unit -->2)-alpha-l-Rhap-(1-->4)-alpha-d-GalpA-(1--> backbone, with side chains attached to O-4 of the rhamnosyl residues. The side chains contained highly branched alpha-(1-->5)-linked arabinan and short linear beta-(1-->4)-linked galactan.

    Topics: Anions; Carbohydrate Conformation; Carbohydrate Sequence; Cell Wall; Chromatography; Chromatography, Ion Exchange; Edetic Acid; Galactans; Hexuronic Acids; Magnetic Resonance Spectroscopy; Microscopy, Electron, Scanning; Molecular Sequence Data; Opuntia; Pectins; Polysaccharides; Temperature; Time Factors; Uronic Acids

2004
Cytochemistry and immunolocalisation of polysaccharides and proteoglycans in the endosperm of green Arabica coffee beans.
    Protoplasma, 2004, Volume: 223, Issue:2-4

    The major noncellulosic polysaccharides and proteoglycans in the coffee bean (Coffea arabica) cell wall are (galacto)mannans and arabinogalactan proteins. Immunological and chemical probes demonstrated that the mannans and arabinogalactan proteins were located continuously across the width of the cell wall, but that the concentration of different structural epitopes within these polysaccharide types showed considerable spatial variation. For the mannans this was implied by the striated pattern demonstrated by fluctuation of the affinity between the mannan monoclonal antibody BGM C6 and (galacto)mannan. The arabinogalactan proteins labelled by the Yariv reagent and the arabinogalactan protein-specific antibody LM2 appeared to be located in all regions of the wall except the middle lamella, but showed some differences in intensity of labelling. However, the LM6 antibody, specific for (1-->5)-alpha-arabinan epitopes, was located only as a compact region adjacent to the cell lumen in the body of the endosperm; though, it did label throughout the wall of epidermal cells. This implied that either some of the more highly arabinosylated arabinogalactan proteins contained contiguous 5-arabinosyl residues or that a rhamnogalacturonan which contained 5-arabinosyl residues as side chains existed in the cell wall. In either case the polymers were very restricted in their distribution. A second category of pectin, a homogalacturonan detected by JIM7, was located only in the middle lamella region. The architecture of the wall, as revealed by resin etching, appeared to reflect the chemical heterogeneity, with three distinct physical zones identifiable in a cross section across a single wall.

    Topics: Biopolymers; Cell Wall; Coffea; Coffee; Mannans; Mucoproteins; Pectins; Plant Proteins; Polysaccharides; Proteoglycans; Seeds

2004
Loss of highly branched arabinans and debranching of rhamnogalacturonan I accompany loss of firm texture and cell separation during prolonged storage of apple.
    Plant physiology, 2004, Volume: 135, Issue:3

    Growth and maturation of the edible cortical cells of apples (Malus domestica Borkh) are accompanied by a selective loss of pectin-associated (1-->4)-beta-D-galactan from the cell walls, whereas a selective loss of highly branched (1-->5)-alpha-L-arabinans occurs after ripening and in advance of the loss of firm texture. The selective loss of highly branched arabinans occurs during the overripening of apples of four cultivars (Gala, Red Delicious, Firm Gold, and Gold Rush) that varied markedly in storage life, but, in all instances, the loss prestages the loss of firm texture, measured by both breaking strength and compression resistance. The unbranched (1-->5)-linked arabinans remain associated with the major pectic polymer, rhamnogalacturonan I, and their content remains essentially unchanged during overripening. However, the degree of rhamnogalacturonan I branching at the rhamnosyl residues also decreases, but only after extensive loss of the highly branched arabinans. In contrast to the decrease in arabinan content, the loss of the rhamnogalacturonan I branching is tightly correlated with loss of firm texture in all cultivars, regardless of storage time. In vitro cell separation assays show that structural proteins, perhaps via their phenolic residues, and homogalacturonans also contribute to cell adhesion. Implications of these cell wall modifications in the mechanisms of apple cortex textural changes and cell separation are discussed.

    Topics: Carbohydrates; Cell Wall; Flowers; Food Preservation; Malus; Pectins; Polysaccharides; Species Specificity

2004
Purification, structure and immunobiological activity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds.
    Carbohydrate research, 2004, Oct-20, Volume: 339, Issue:15

    The structure and bioactivity of a polysaccharide extracted and purified from a 4M KOH + H3BO3 solution from Prunus dulcis seed cell wall material was studied. Anion-exchange chromatography of the crude extract yielded two sugar-rich fractions: one neutral (A), the other acidic (E). These fractions contain a very similar monosaccharide composition: 5:2:1 for arabinose, uronic acids and xylose, respectively, rhamnose and galactose being present in smaller amounts. As estimated by size-exclusion chromatography, the acidic fraction had an apparent molecular mass of 762 kDa. Methylation analysis (from the crude and fractions A and E), suggests that the polysaccharide is an arabinan-rich pectin. In all cases, the polysaccharides bear the same type of structural Ara moieties with highly branched arabinan-rich pectic polysaccharides. The average relative proportions of the arabinosyl linkages is 3:2:1:1 for T-Araf:(1-->5)-Araf:(1-->3,5)-Araf:(1-->2,3,5)-Araf. The crude polysaccharide extract and fractions A and E induced a murine lymphocyte stimulatory effect, as evaluated by the in vitro and in vivo expression of lymphocyte activation markers and spleen mononuclear cells culture proliferation. The lymphocyte stimulatory effect was stronger on B- than on T-cells. No evidence of cytotoxic effects induced by the polysaccharide fractions was found.

    Topics: Animals; B-Lymphocytes; Cell Wall; Cells, Cultured; Lymphocyte Activation; Macrophages; Mice; Pectins; Polysaccharides; Prunus; Seeds; T-Lymphocytes

2004
Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains.
    Carbohydrate research, 2002, May-13, Volume: 337, Issue:10

    An arabinan (97% of Ara and 3% of hexuronic acid) was isolated from the alcohol-insoluble residue (AIR) of olive pomace by treatment with 0.02 M HNO(3), at 80 degrees C, followed by graded precipitation with ethanol. It was separated from acidic pectic polysaccharides by anion-exchange chromatography, and by size-exclusion chromatography its molecular weight was estimated as 8.4 kDa. By methylation analysis, the linkage composition was established as 5:4:3:1 for (1-->5)-Araf, T-Araf, (1-->3,5)-Araf and (1-->3)-Araf, respectively. 13C NMR spectroscopy confirmed this linkage composition, and allowed to assign the alpha anomeric configuration for the arabinofuranosyl residues, except for some terminally linked ones, that were seen to occur as T-beta-Araf. By 2D NMR spectroscopy (1H and 13C), it was possible to conclude that the T-beta-Araf was (1-->5)-linked to a (1-->5)-Araf residue. Also, in the arabinan (1-->5)-Araf backbone, the branched (1-->3,5)-Araf residues were always adjacent to linear (1-->5)-Araf residues. A tentative structure is proposed.

    Topics: Carbohydrate Conformation; Carbohydrate Sequence; Methylation; Molecular Sequence Data; Molecular Weight; Nuclear Magnetic Resonance, Biomolecular; Olea; Pectins; Polysaccharides

2002
In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development.
    The Plant journal : for cell and molecular biology, 2002, Volume: 30, Issue:4

    Rhamnogalacturonan (RG) I is a branched pectic polysaccharide in plant cell walls. Rhamnogalacturonan lyase (eRGL) from Aspergillus aculeatus is able to cleave the RG I backbone at specific sites. Transgenic potato (Solanum tuberosum L.) plants were made by the introduction of the gene encoding eRGL, under the control of the granule-bound starch synthase promoter. The eRGL protein was successfully expressed and translated into an active form, demonstrated by eRGL activity in the tuber extracts. The transgenic plants produced tubers with clear morphological alterations, including radial swelling of the periderm cells and development of intercellular spaces in the cortex. Sugar compositional analysis of the isolated cell walls showed a large reduction in galactosyl and arabinosyl residues in transgenic tubers. Immunocytochemical studies using the LM5 (galactan) and LM6 (arabinan) antibodies also showed a large reduction in galactan and arabinan side-chains of RG I. Most of the remaining LM5 epitopes were located in the expanded middle lamella at cell corners of eRGL tubers, which is in contrast to their normal location in the primary wall of wild type tubers. These data suggest that RG I has an important role in anchoring galactans and arabinans at particular regions in the wall and in normal development of the periderm.

    Topics: Aspergillus; Cell Wall; Galactans; Microscopy, Confocal; Microscopy, Electron; Pectins; Plant Stems; Plants, Genetically Modified; Polysaccharide-Lyases; Polysaccharides; Solanum tuberosum

2002
Altered middle lamella homogalacturonan and disrupted deposition of (1-->5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato.
    Plant physiology, 2001, Volume: 126, Issue:1

    Cnr (colorless non-ripening) is a pleiotropic tomato (Lycopersicon esculentum) fruit ripening mutant with altered tissue properties including weaker cell-to-cell contacts in the pericarp (A.J. Thompson, M. Tor, C.S. Barry, J. Vrebalov, C. Orfila, M.C. Jarvis, J.J. Giovannoni, D. Grierson, G.B. Seymour [1999] Plant Physiol 120: 383-390). Whereas the genetic basis of the Cnr mutation is being identified by molecular analyses, here we report the identification of cell biological factors underlying the Cnr texture phenotype. In comparison with wild type, ripe-stage Cnr fruits have stronger, non-swollen cell walls (CW) throughout the pericarp and extensive intercellular space in the inner pericarp. Using electron energy loss spectroscopy imaging of calcium-binding capacity and anti-homogalacturonan (HG) antibody probes (PAM1 and JIM5) we demonstrate that maturation processes involving middle lamella HG are altered in Cnr fruit, resulting in the absence or a low level of HG-/calcium-based cell adhesion. We also demonstrate that the deposition of (1-->5)-alpha-L-arabinan is disrupted in Cnr pericarp CW and that this disruption occurs prior to fruit ripening. The relationship between the disruption of (1-->5)-alpha-L-arabinan deposition in pericarp CW and the Cnr phenotype is discussed.

    Topics: Microscopy, Electron, Scanning; Mutation; Pectins; Polysaccharides; Solanum lycopersicum

2001
Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells.
    Planta, 2001, Volume: 213, Issue:6

    When leaf disks from haploid plants of Nicotiana plumbaginifolia Viv. were transformed with T-DNA and cultured on shoot-inducing medium, nonorganogenic callus. designated nolac (for non-organogenic callus with loosely attached cells), appeared on approximately 7% of leaf disks. In contrast, normal callus was generated on T-DNA-transformed leaf disks from diploid plants and on non-transformed leaf disks from haploid and diploid plants. Transmission electron microscopy revealed that the middle lamellae and the cell walls of one line of mutant callus (nolac-H14) were barely stained by ruthenium red. even after demethylesterification with NaOH, whereas the entire cell wall and the middle lamella were strongly stained in normal callus. In cultures of nolac-H14 callus, the level of sugar components of pectic polysaccharides in the hemicellulose fraction was reduced and that in the culture medium was elevated, as compared with cultures of normal callus. These results indicate that pectic polysaccharides are not retained in the cell walls and middle lamellae of nolac-H14 callus. In nolac-H14, the ratio of arabinose to galactose was low in the pectic polysaccharides purified from all cell wall fractions and from the medium, in particular, in the hemicellulose fractions. The low levels of arabinofuranosyl (T-Araf, 5-Araf, 2,5-Araf, and 3,5-Araf) residues in the pectic polysaccharides of the hemicellulosic fraction of nolac-H,14 indicated that no neutral-sugar side chains, composed mainly of linear arabinan. were present in nolac-H14. Arabinose-rich pectins. which are strongly associated with cellulose-hemicellulose complexes, might play an important role in intercellular attachment in the architecture of the cell wall.

    Topics: Arabinose; Cell Division; Cell Wall; Cellulose; Culture Techniques; DNA, Bacterial; Galactose; Microscopy, Electron; Microscopy, Electron, Scanning; Mutation; Nicotiana; Pectins; Polysaccharides; Transformation, Genetic

2001
Differential localization of arabinan and galactan side chains of rhamnogalacturonan 1 in cambial derivatives.
    Planta, 2000, Volume: 210, Issue:5

    The development of pectin structural features during the differentiation of cambial derivatives was investigated in aspen (Populus tremula L. x P. tremuloides Michx.) using biochemical and immunocytochemical methods. Comparisons were also made between active and resting tissues. Active tissues, in particular cambial cells and phloem derivatives, were characterized by a high pectin content. Use of antibodies raised against arabinan side chains of rhamnogalacturonan 1 (LM6), as well as biochemical analysis, revealed an obvious decrease from the cortex to the differentiating xylem. Galactan side chains, detected with LM5 antibodies, were present mainly in the cambial zone and enlarging xylem cells. In contrast, they were totally absent from sieve-tube cell walls. Image analysis of LM5 immunogold labelling in the cambial zone showed a clustered distribution of galactan epitopes in the radial walls, a distribution which might result from the association of two different periodic processes, namely the exocytosis of galactan and wall expansion. Cessation of cambial activity was characterized by cell wall thickening accompanied by a sharp decrease in the relative amount of pectin and a lowering of the degree of methylesterification. The data provide evidence that the walls of phloem and xylem cells differ in their pectin composition even at a very early stage of commitment. These differences offer useful tools for identifying the initial cells among their immediate neighbours.

    Topics: Cell Wall; Fluorescent Antibody Technique; Galactans; Microscopy, Confocal; Microscopy, Immunoelectron; Pectins; Plant Structures; Polysaccharides; Time Factors; Trees

2000
Oxidative cross-linking of pectic polysaccharides from sugar beet pulp.
    Carbohydrate research, 2000, Sep-08, Volume: 328, Issue:2

    Oxidative cross-linking of three beet pectin extracts with hydrogen peroxide/peroxidase resulted in an increase in viscosity at low concentrations and in the formation of a gel at higher concentrations. Gels were formed using concentrations of 1.5% for an autoclave preparation and one obtained by an acid extraction and of 3% for a second autoclaved extract. It was shown that in the autoclave extracts only rhamnogalacturonans and possibly the arabinans participated in the cross-linking reaction. Cross-linking of the autoclave extracts with ammonium persulfate resulted in a decrease in reduced viscosity and molecular weight, although ferulic acid dehydrodimers were formed. Treatment of the acid extracted pectin with ammonium persulfate gave a slow increase in viscosity and the formation of a high-molecular-weight population was observed. For both oxidative systems, the 8-5 dehydrodimer was predominant after cross-linking.

    Topics: Ammonium Sulfate; Chenopodiaceae; Chromatography, Gel; Coumaric Acids; Cross-Linking Reagents; Dimerization; Food Additives; Gels; Hot Temperature; Hydrogen Peroxide; Molecular Weight; Oxidation-Reduction; Pectins; Peroxidase; Polysaccharides; Viscosity

2000
Generation of monoclonal antibody specific to (1-->5)-alpha-L-arabinan.
    Carbohydrate research, 1998, Volume: 308, Issue:1-2

    A neoglycoprotein (a heptasaccharide of (1-->5)-alpha-L-linked-arabinosyl residues linked to bovine serum albumin) has been used to generate a rat monoclonal antibody specific to a linear chain of (1-->5)-alpha-L-arabinan which is a structural feature of the side chains of pectins. The antibody, designated LM6, detected 100 ng of debranched sugar beet arabinan in an immunodot binding assay and 1 microgram of commercial citrus pectin in a similar assay. Hapten inhibition studies indicated that the antibody recognized 5-6 Ara residues and 50% inhibition of antibody binding in a competitive inhibition ELISA was achieved with ca. 2ng (21 nM) of (1-->5)-alpha-L-Arabinohexaose. The antibody will be useful for the localization of arabinans in plant tissue and will have uses in the analyses of pectin structure. We report here on the localization of the arabinan epitope in lemon fruits using tissue printing.

    Topics: Animals; Antibodies, Monoclonal; Cattle; Chenopodiaceae; Citrus; Enzyme-Linked Immunosorbent Assay; Epitopes; Glycoproteins; Male; Pectins; Polysaccharides; Rats; Rats, Wistar

1998
APPLE FRUIT PECTIC SUBSTANCES.
    The Biochemical journal, 1965, Volume: 94

    1. The pectic substances of apple have been extracted and separated into a pure pectinic acid and a neutral arabinan-galactan complex by precipitation of the acidic component with ethanol and with cetylpyridinium chloride. 2. The composition of the fractions has been determined. The pectinic acid contained galacturonic acid, arabinose, galactose, rhamnose, xylose and several trace sugars. 3. Transelimination degradation of the pectinic acid gave rise to two components completely separable by zone electrophoresis and by Sephadex gel filtration. Analysis of these components confirmed that the pectinic acid molecules contained long chains of esterified galacturonosyl residues, but showed in addition that more neutral portions containing a high proportion of arabinofuranose residues were attached to them. 4. The identification of rhamnose, galactose and xylose in aldobiouronic acids obtained from a partial hydrolysate of pectinic acid has shown that these sugars are covalently linked in the molecule, and it is suggested that the galacturonosyl-(1-->2)-rhamnose link is a general feature of pectinic acid structure. 5. The possible biological significance of pectinic acid structure has been discussed. 6. The arabinan-galactan complex contained nearly equal quantities of arabinose and galactose residues and some of its physical properties have been investigated.

    Topics: Arabinose; Biochemical Phenomena; Biochemistry; Carbohydrates; Chemistry Techniques, Analytical; Chromatography; Chromatography, Gel; Electrophoresis; Esterases; Fruit; Galactose; Hexuronic Acids; Malus; Pectins; Polysaccharides; Research; Ultracentrifugation

1965
Pectic substances; the structure of the araban from Arachis Hypogea.
    Journal of the Chemical Society, 1947, Volume: 25

    Topics: Arachis; Pectins; Polysaccharides

1947