pd-150606 has been researched along with benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone* in 2 studies
2 other study(ies) available for pd-150606 and benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone
Article | Year |
---|---|
Calpain inhibitor PD150606 attenuates glutamate induced spiral ganglion neuron apoptosis through apoptosis inducing factor pathway in vitro.
This research aimed to investigate whether glutamate induced spiral ganglion neurons (SGNs) apoptosis through apoptosis inducing factor (AIF) pathway. And verify whether PD150606, a calpain inhibitor could prevent apoptosis by inhibiting cleaving and releasing AIF in mitochondrion.. SGNs of postnatal days 0-3 were harvested and cultured in dishes. 20 mM Glu, the caspase inhibitor Z-VAD-FMK and calpain inhibitor PD150606 were added into cultured dishes separately. We used optical microscope and immunofluoresence staining to observe cell morphology and AIF distribution, RT-PCR and Westernblot to analyse AIF and calpain expression in SGNs. TUNEL assay was used to test cell apoptosis.. Cell morphology and nuclear translocation of AIF were altered in SGNs by 20 mM Glu treated in vitro. The axon of SGN shortened, more apoptosis SGN were observed and the expression of AIF and calpain were up-regulated in Glu-treated group than the normal one (P<0.05). The same experiments were conducted in 20 mM+PD150606 treated group and 20 mM+Z-VAD-FMK group. Obviously AIF were located from cytoplasm to the nuclear and the expressions of AIF and calpain were down-regulated by PD150606 (P<0.05). Positive cells in TUNEL staining decreased after PD150606 treating. However, Z-VAD-FMK had no influence on AIF, calpain expression or cell apoptosis.. The AIF-related apoptosis pathway is involved in the process of Glu-induced SGN injury. Furthermore, the inhibition of calpain can prevent AIF from releasing the nuclear or inducing SGN apoptosis. Topics: Acrylates; Amino Acid Chloromethyl Ketones; Animals; Animals, Newborn; Apoptosis; Apoptosis Inducing Factor; Calpain; Caspase Inhibitors; Caspases; Cell Nucleus; Gene Expression Regulation; Glutamic Acid; Glycoproteins; Mitochondria; Neurons; Primary Cell Culture; Protein Transport; Rats; Rats, Sprague-Dawley; Signal Transduction; Spiral Ganglion | 2015 |
Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition.
Inhibitors of proteases are currently emerging as a potential anti-cancer modality. Nonselective protease inhibitors are cytotoxic to leukemia and cancer cell lines and we found that this cytotoxicity is correlated with their potency as inhibitors of the proteasome but not as inhibitors of calpain and cathepsin. Highly selective inhibitors of the proteasome were more cytotoxic and fast-acting than less selective inhibitors (PS341>>ALLN>>ALLM). Induction of wt p53 correlated with inhibition of the proteasome and antiproliferative effect in MCF7, a breast cancer cell line, which was resistant to apoptosis caused by proteasome inhibitors. In contrast, inhibitors of the proteasome induced apoptosis in four leukemia cell lines lacking wt p53. The order of sensitivity of leukemia cells was: Jurkat>HL60> or =U937>>K562. The highly selective proteasome inhibitor PS-341 induced cell death with an IC50 as low as 5 nM in apoptosis-prone leukemia cells. Cell death was preceded by p21WAF1/CIP1 accumulation, an alternative marker of proteasome inhibition, and by cleavage of PARP and Rb proteins and nuclear fragmentation. Inhibition of caspases abrogated PARP cleavage and nuclear fragmentation and delayed, but did not completely prevent cell death caused by PS-341. Reintroduction of wt p53 into p53-null PC3 prostate carcinoma cells did not increase their sensitivity to proteasome inhibitors. Likewise, comparison of parental and p21-deficient cells demonstrated that p21WAF1/CIP1 was dispensable for proteasome inhibitor-induced cytotoxicity. We conclude that accumulation of wt p53 and induction of apoptosis are independent markers of proteasome inhibition. Topics: Acetylcysteine; Acrylates; Amino Acid Chloromethyl Ketones; Apoptosis; Boronic Acids; Bortezomib; Calpain; Cathepsins; Cell Division; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; Cysteine Endopeptidases; Drug Synergism; Genes, p53; Humans; Jurkat Cells; Leupeptins; Multienzyme Complexes; Neoplasm Proteins; Neoplasms; Oligopeptides; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Tumor Cells, Cultured; Tumor Suppressor Protein p53; U937 Cells | 2000 |