pci-32765 and ursodoxicoltaurine

pci-32765 has been researched along with ursodoxicoltaurine* in 1 studies

Other Studies

1 other study(ies) available for pci-32765 and ursodoxicoltaurine

ArticleYear
Ibrutinib improves the development of acute lymphoblastic leukemia by activating endoplasmic reticulum stress-induced cell death.
    Die Pharmazie, 2018, 05-01, Volume: 73, Issue:5

    The current study mainly aims to evaluate the effects of ibrutinib on endoplasmic reticulum stress (ERS)-induced apoptosis in Reh cells, which may shed light on the treatment of acute lymphoblastic leukemia (ALL) among children. In line with previous studies, our data show that ibrutinib significantly suppressed Reh cell viability in a time- and dose-dependent manner. We further evaluated the role of ibrutinib on Reh cell colony formation and apoptosis. Ibrutinib inhibited clonogenic capacity and induced Reh cell apoptosis, suggesting an anti-tumor effects of ibrutinib in the progression of ALL. Further study showed that ibrutinib treatment increased ERS-related protein expression, including Bip, ATF4 and CHOP, suggesting the induction of ER-stress in Reh cells. More importantly, once ER-stress was suppressed by tauroursodeoxycholic acid (TUDCA), an ER-stress inhibitor, the upregulation of Bip, ATF4, CHOP, cleaved-caspase3 and cleaved-PARP after ibrutinib treatment was partially reversed, suggesting that induction of ALL cell apoptosis by ibrutinib was partially attributed to activation of ER stress. In summary, we showed novel data that ER-stress induced cell apoptosis plays a key role in the therapeutic effects of ibrutinib on ALL cell malignancies.

    Topics: Activating Transcription Factor 4; Adenine; Apoptosis; Caspase 3; Cell Line, Tumor; Cell Survival; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Heat-Shock Proteins; Humans; Piperidines; Poly (ADP-Ribose) Polymerase-1; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Protein Kinase Inhibitors; Pyrazoles; Pyrimidines; Taurochenodeoxycholic Acid; Transcription Factor CHOP

2018