pazopanib and vatalanib

pazopanib has been researched along with vatalanib* in 3 studies

Reviews

2 review(s) available for pazopanib and vatalanib

ArticleYear
[Possibilities for inhibiting tumor-induced angiogenesis: results with multi-target tyrosine kinase inhibitors].
    Magyar onkologia, 2012, Volume: 56, Issue:1

    Functional blood vasculature is essential for tumor progression. The main signalization pathways that play a key role in the survival and growth of tumor vessels originate from the VEGF-, PDGF- and FGF tyrosine kinase receptors. In the past decade, significant results have been published on receptor tyrosine kinase inhibitors (RTKIs). In this paper, the mechanisms of action and the results so far available of experimental and clinical studies on multi-target antiangiogenic TKIs are discussed. On the one hand, notable achievements have been made recently and these drugs are already used in clinical practice in some patient populations. On the other hand, the optimal combination and dosage of these drugs, selection of the apropriate biomarker and better understanding of the conflicting role of PDGFR and FGFR signaling in angiogenesis remain future challenges.

    Topics: Angiogenesis Inhibitors; Animals; Axitinib; Benzenesulfonates; Humans; Imidazoles; Indazoles; Indoles; Neoplasms; Neovascularization, Pathologic; Niacinamide; Oligonucleotides; Phenylurea Compounds; Phthalazines; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Receptors, Fibroblast Growth Factor; Receptors, Platelet-Derived Growth Factor; Receptors, Vascular Endothelial Growth Factor; Signal Transduction; Sorafenib; Sulfonamides; Sunitinib

2012
[Nintedanib (BIBF 1120) in the treatment of solid cancers: an overview of biological and clinical aspects].
    Magyar onkologia, 2012, Volume: 56, Issue:3

    Angiogenesis is essential for tumor growth and metastasis. The main regulators of the process are the signaling cascades of VEGF-, PDGF- and FGF receptors. Inhibition of these pathways holds potential therapeutic benefit not only for cancer patients, but also for the treatment of other diseases. This paper summarizes the experimental and clinical results of studies available so far on the multi-target tyrosine kinase inhibitor nintedanib (BIBF 1120). According to these studies, nintedanib effectively inhibits VEGFR-, PDGFR- and FGFR signalization and thus the proliferation and survival of cell types which highly express these receptors (i.e. endothelial and smooth muscle cells and pericytes). In vitro studies and in vivo xenograft experiments have provided promising results. In the clinical setting, BIBF 1120 seems to be effective and well tolerated in various tumor types, such as lung, prostate, colorectal and hepatocellular carcinoma, as well as in gynecological tumors. The main adverse events are gastrointestinal toxicities and the reversible elevation of liver enzyme levels. Nintedanib might also be combined with paclitaxel, carboplatin, pemetrexed and docetaxel. There are several ongoing clinical trials testing the efficacy of BIBF 1120.

    Topics: Animals; Antineoplastic Agents; Axitinib; Benzenesulfonates; Carcinoma, Hepatocellular; Clinical Trials as Topic; Colorectal Neoplasms; Digestive System; Enzyme Inhibitors; Female; Genital Neoplasms, Female; Humans; Imidazoles; Indazoles; Indoles; Liver Neoplasms; Lung Neoplasms; Male; Neoplasms; Niacinamide; Oligonucleotides; Phenylurea Compounds; Phthalazines; Piperidines; Prostatic Neoplasms; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Quinazolines; Receptors, Fibroblast Growth Factor; Receptors, Platelet-Derived Growth Factor; Receptors, Vascular Endothelial Growth Factor; Signal Transduction; Sorafenib; Sulfonamides; Xenograft Model Antitumor Assays

2012

Other Studies

1 other study(ies) available for pazopanib and vatalanib

ArticleYear
The vascular endothelial growth factor receptor tyrosine kinase inhibitors vatalanib and pazopanib potently induce apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2010, Jul-01, Volume: 16, Issue:13

    There is evidence that vascular endothelial growth factor (VEGF) is a critical microenvironmental factor that exerts angiogenesis-independent effects on the survival of chronic lymphocytic leukemia (CLL) cells. Vatalanib and pazopanib are potent orally available VEGF receptor tyrosine kinase inhibitors. We investigated the efficacy and selectivity of both compounds in CLL cells, simulated potential combination with conventional cytostatics, and tested the effect of both substances on CLL-like tumor xenografts.. Primary CLL and normal peripheral blood cells were tested for viability after incubation with varying concentrations of both inhibitors. Further, phosphorylation status of VEGF receptor on treatment, caspase activation, and poly(ADP-ribose) polymerase cleavage were assessed. Combinations of each inhibitor with fludarabine, vincristine, and doxorubicin were analyzed for possible synergistic effects in vitro. For in vivo testing, mice grafted with the CLL-like cell line JVM-3 were treated orally with each inhibitor.. Vatalanib and pazopanib decreased phosphorylation of the VEGF receptor, along with induction of apoptosis in CLL cells in clinically achievable concentrations. Healthy B cells were only mildly affected. Immunoblots showed downregulation of the antiapoptotic proteins XIAP and MCL1, whereas poly(ADP-ribose) polymerase cleavage was increased. Combinations with conventional cytostatic agents resulted in synergistic effects. Treatment of xenografted mice with 100 mg/kg of body weight for 21 days resulted in tumor inhibition rates of 76% (vatalanib) and 77% (pazopanib). In two mice, a total tumor eradication could be observed. No gross systemic toxicity occurred.. We conclude that VEGF inhibition is a promising new therapeutic approach in CLL. Vatalanib and pazopanib seem to be effective and safe candidates to be further evaluated for this purpose.

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Caspases; Cell Line, Tumor; Dose-Response Relationship, Drug; Humans; Indazoles; Leukemia, Lymphocytic, Chronic, B-Cell; Mice; Phosphorylation; Phthalazines; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Receptors, Vascular Endothelial Growth Factor; Sulfonamides; Xenograft Model Antitumor Assays

2010