Page last updated: 2024-08-21

paraquat and levofloxacin

paraquat has been researched along with levofloxacin in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's4 (80.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Glen, RC; Lowe, R; Mitchell, JB1
Ekins, S; Williams, AJ; Xu, JJ1
Hidalgo, AA; Millanao, AR; Mora, AY; Mora, GC; Saavedra, CP; Valenzuela, LM; Villagra, NA1

Other Studies

5 other study(ies) available for paraquat and levofloxacin

ArticleYear
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
Predicting phospholipidosis using machine learning.
    Molecular pharmaceutics, 2010, Oct-04, Volume: 7, Issue:5

    Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Cysteine auxotrophy drives reduced susceptibility to quinolones and paraquat by inducing the expression of efflux-pump systems and detoxifying enzymes in S. Typhimurium.
    Biochemical and biophysical research communications, 2019, 07-23, Volume: 515, Issue:2

    Topics: Anti-Bacterial Agents; Bacterial Proteins; Ciprofloxacin; Cysteine; Drug Resistance, Multiple, Bacterial; Gene Deletion; Gene Expression; Genes, Bacterial; Humans; Levofloxacin; Membrane Transport Proteins; Mutation; Nalidixic Acid; Paraquat; Quinolones; Reactive Oxygen Species; Salmonella typhimurium; Sulfur

2019