papa-nonoate and 3-nitrotyrosine

papa-nonoate has been researched along with 3-nitrotyrosine* in 2 studies

Other Studies

2 other study(ies) available for papa-nonoate and 3-nitrotyrosine

ArticleYear
Peroxynitrite inhibits inducible (type 2) nitric oxide synthase in murine lung epithelial cells in vitro.
    Free radical biology & medicine, 2001, May-01, Volume: 30, Issue:9

    Peroxynitrite, formed by nitric oxide (NO) and superoxide, can alter protein function by nitrating amino acids such as tyrosine, cysteine, trytophan, or methionine. Inducible nitric oxide synthase (Type 2 NOS or iNOS) converts arginine to citrulline, releasing NO. We hypothesized that peroxynitrite could function as a negative feedback modulator of NO production by nitration of iNOS. Confluent cultures of the murine lung epithelial cell line, LA-4 were stimulated with cytokines to express iNOS, peroxynitrite was added, and the flasks sealed. After 3 h, NO in the headspace above the culture was sampled. Peroxynitrite caused a concentration-dependent decrease in NO. Similar results were obtained when 3-morpholinosydnonimine (SIN-1), a peroxynitrite generator, was added to the flasks. PAPA-NONOate, the NO generator, did not affect the headspace NO. Nitration of the iNOS was confirmed by detection of 3-nitrotyrosine by Western blotting. These data suggest a mechanism for inhibition of NO synthesis at inflammatory sites where iNOS, NO, and superoxide would be expected.

    Topics: Animals; Base Sequence; Cell Line; DNA Primers; Enzyme Inhibitors; Epithelial Cells; Gene Expression; Hydrazines; Lung; Mice; Molsidomine; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Oxidants; RNA, Messenger; Tyrosine

2001
Effects of reactive oxygen and nitrogen metabolites on RANTES- and IL-5-induced eosinophil chemotactic activity in vitro.
    The American journal of pathology, 1999, Volume: 155, Issue:2

    Eosinophils and increased production of nitric oxide (NO) and superoxide, components of peroxynitrite, have been implicated in the pathogenesis of a number of allergic disorders including asthma. Peroxynitrite induced protein nitration may compromise enzyme and protein function. We hypothesized that peroxynitrite may modulate eosinophil migration by modulating chemotactic cytokines. To test this hypothesis, the eosinophil chemotactic responses of regulated on activation, normal T cell expressed and secreted (RANTES) and interleukin (IL)-5 incubated with and without peroxynitrite were evaluated. Peroxynitrite-attenuated RANTES and IL-5 induced eosinophil chemotactic activity (ECA) in a dose-dependent manner (P < 0.05) but did not attenuate leukotriene B4 or complement-activated serum ECA. The reducing agents deferoxamine and dithiothreitol reversed the ECA inhibition by peroxynitrite, and exogenous L-tyrosine abrogated the inhibition by peroxynitrite. PAPA-NONOate, a NO donor, or superoxide generated by lumazine or xanthine and xanthine oxidase, did not show an inhibitory effect on ECA. The peroxynitrite generator, 3-morpholinosydnonimine, caused a concentration-dependent inhibition of ECA. Peroxynitrite reduced RANTES and IL-5 binding to eosinophils and resulted in nitrotyrosine formation. These findings are consistent with nitration of tyrosine by peroxynitrite with subsequent inhibition of RANTES and IL-5 binding to eosinophils and suggest that peroxynitrite may play a role in regulation of eosinophil chemotaxis.

    Topics: Chemokine CCL5; Chemotaxis; Deferoxamine; Dithiothreitol; Dose-Response Relationship, Drug; Eosinophils; Humans; Hydrazines; Interleukin-5; Leukotriene B4; Molsidomine; Nitrates; Nitric Oxide; Nitrogen; Pteridines; Reactive Oxygen Species; Superoxides; Tyrosine; Xanthine

1999