papa-nonoate has been researched along with 1-1-diethyl-2-hydroxy-2-nitrosohydrazine* in 6 studies
6 other study(ies) available for papa-nonoate and 1-1-diethyl-2-hydroxy-2-nitrosohydrazine
Article | Year |
---|---|
Nitric oxide inhibits highly selective sodium channels and the Na+/K+-ATPase in H441 cells.
Nitric oxide (NO) is an important regulator of Na(+) reabsorption by pulmonary epithelial cells and therefore of alveolar fluid clearance. The mechanisms by which NO affects epithelial ion transport are poorly understood and vary from model to model. In this study, the effects of NO on sodium reabsorption by H441 cell monolayers were studied in an Ussing chamber. Two NO donors, (Z)-1-[N-(3-aminopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate and diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, rapidly, reversibly, and dose-dependently reduced amiloride-sensitive, short-circuit currents across H441 cell monolayers. This effect was neutralized by the NO scavenger hemoglobin and was not observed with inactive NO donors. The effects of NO were not blocked by 8-bromoguanosine-3',5'-cyclic monophosphate or by soluble guanylate cyclase inhibitors (methylene blue and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) and were therefore independent of soluble guanylate cyclase signaling. NO targeted apical, highly selective, amiloride-sensitive Na(+) channels in basolaterally permeabilized H441 cell monolayers. NO had no effect on the activity of the human epithelial sodium channel heterologously expressed in Xenopus oocytes. NO decreased Na(+)/K(+)-ATPase activity in apically permeabilized H441 cell monolayers. The inhibition of Na(+)/K(+)-ATPase activity by NO was reversed by mercury and was mimicked by N-ethylmaleimide, which are agents that reverse and mimic, respectively, the reaction of NO with thiol groups. Consistent with these data, S-NO groups were detected on the Na(+)/K(+)-ATPase α subunit in response to NO-donor application, using a biotin-switch approach coupled to a Western blot. These data demonstrate that, in the H441 cell model, NO impairs Na(+) reabsorption by interfering with the activity of highly selective Na(+) channels and the Na(+)/K(+)-ATPase. Topics: Amiloride; Animals; Biotinylation; Blotting, Western; Bronchioles; Cell Line; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Epithelial Cells; Epithelial Sodium Channels; Guanylate Cyclase; Hemoglobins; Humans; Hydrazines; Membrane Potentials; Nitric Oxide; Nitric Oxide Donors; Patch-Clamp Techniques; Receptors, Cytoplasmic and Nuclear; Sodium; Sodium Channel Blockers; Sodium-Potassium-Exchanging ATPase; Soluble Guanylyl Cyclase; Sulfhydryl Compounds; Xenopus | 2011 |
Calibration of nitric oxide flux generation from diazeniumdiolate *NO donors.
The 1-(secondary amino) diazen-1-ium-1,2-diolates (NONOates) are the most commonly utilized nitric oxide (*NO, nitrogen monoxide) donor because of the ability of different NONOates to spontaneously break down liberating *NO at different rates, which can be utilized to control *NO fluxes. However, the parameters that determine these fluxes of *NO generation, half-lives and stoichiometry of *NO per donor, can vary significantly with specific experimental conditions in addition to the donor chosen. Here we report straightforward methods that can be used to determine these parameters. For donors of intermediate half-life (10-80 min) a real-time oxymyoglobin (oxyMb) assay can be analyzed to simultaneously determine both the half-life and the total amount of *NO liberated, from which the *NO flux can be obtained for any given donor concentration. The half-lives obtained by oxyMb assay are very similar to those obtained by following NONOate decomposition kinetics spectrophotometrically, and a survey of several NONOates from different commercial sources show consistent results. These data provide validation for the methodologies employed. In addition, procedures are described for calibration of donors with shorter (<10 min) and longer (>80 min) half-lives. These procedures can be used to reproducibly and routinely calibrate *NO fluxes for a variety of donors under any specific condition. Topics: Animals; Calibration; Half-Life; Horses; Hydrazines; Kinetics; Myoglobin; Nitric Oxide; Nitric Oxide Donors; Reproducibility of Results; Temperature; Triazenes | 2009 |
Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential.
Nitric oxide (NO) has a number of physiological and pathophysiological effects in the nervous system. One target of NO is the mitochondrion, where it inhibits respiration and ATP synthesis, which may contribute to NO-mediated neuronal injury. Our recent studies suggested that impaired mitochondrial function impairs mitochondrial trafficking, which could also contribute to neuronal injury. Here, we studied the effects of NO on mitochondrial movement and morphology in primary cultures of forebrain neurons using a mitochondrially targeted enhanced yellow fluorescent protein. NO produced by two NO donors, papa non-oate and diethylamine/NO complex, caused a rapid cessation of mitochondrial movement but did not alter morphology. Movement recovered after removal of NO. The effects of NO on movement were associated with dissipation of the mitochondrial membrane potential. Increasing cGMP levels using 8-bromoguanosine 3',5'-cyclic monophosphate, did not mimic the effects on mitochondrial movement. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-induced activation of soluble guanylate cyclase, did not block the effects of NO. Thus, neither increasing nor decreasing cGMP levels had an effect on mitochondrial movement. Based on these data, we conclude that NO is a novel modulator of mitochondrial trafficking in neurons, which may act through the inhibition of mitochondrial function. Topics: Animals; Cells, Cultured; Cyclic GMP; Dose-Response Relationship, Drug; Drug Interactions; Embryo, Mammalian; Enzyme Inhibitors; Glutamic Acid; Hydrazines; Membrane Potentials; Mitochondria; Movement; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Oxadiazoles; Prosencephalon; Quinoxalines; Rats; Time Factors | 2006 |
Presentation of nitric oxide regulates monocyte survival through effects on caspase-9 and caspase-3 activation.
In the absence of survival factors, blood monocytes undergo spontaneous apoptosis, which involves the activation of caspase-3. Although nitric oxide can block caspase-3 activation and promote cell survival, it can also induce apoptosis. We hypothesized that nitrosothiols that promote protein S-nitrosylation would reduce caspase-3 activation and cell survival, whereas nitric oxide donors (such as 1-propamine 3-(2-hydroxy-2-nitroso-1-propylhydrazine (PAPA) NONOate and diethylamine (DEA) NONOate) that do not target thiol residues would not. Using human monocytes as a model, we observed that nitrosothiol donors S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine suppressed caspase-9 and caspase-3 activity and DNA fragmentation. In contrast, PAPA or DEA NONOate did not promote monocyte survival events and appeared to inhibit monocyte survival induced by macrophage colony-stimulating factor. The caspase-3-selective inhibitor DEVD-fluoromethyl ketone reversed DNA fragmentation events, and the caspase-9 inhibitor LEHD-fluoromethyl ketone reversed caspase-3 activity in monocytes treated with PAPA or DEA NONOate in the presence of macrophage colony-stimulating factor. These results were not caused by differences in glutathione levels or the kinetics of nitric oxide release. Moreover, S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine directly blocked the activity of recombinant caspase-3, which was reversed by the reducing agent dithiothreitol, whereas PAPA or DEA NONOate did not block the enzymatic activity of caspase-3. These data support the hypothesis that nitrosylation of protein thiol residues by nitric oxide is critical for promoting the survival of human monocytes. Topics: Caspase 3; Caspase 9; Caspases; Cell Survival; DNA Fragmentation; Enzyme Activation; Glutathione; Humans; Hydrazines; In Vitro Techniques; Kinetics; Monocytes; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; S-Nitrosoglutathione | 2003 |
Analysis of the neuroprotective effects of various nitric oxide donor compounds in murine mixed cortical cell culture.
Nitric oxide (NO) has been implicated in both the pathogenesis of and protection from NMDA receptor-mediated neuronal injury. This apparent paradox has been attributed to alternate redox states of nitrogen monoxide, whereby, depending on the redox milieu, nitrogen monoxide can be neuroprotective via nitrosation chemistry or react with superoxide to form secondary toxic species. In our murine mixed cortical cell culture system, the NONOate-type NO donors diethylamine/NO complex sodium (Dea/NO), (Z)-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium++ +-1,2-diolate (Papa/NO), and spermine/NO complex sodium (Sper/NO), as well as the S-nitrosothiols S-nitroso-L-glutathione (GSNO) and S-nitroso-N-acetyl-D,L-penicillamine (SNAP) (NO+ equivalents), decreased NMDA-induced neuronal injury in a concentration-dependent manner. 8-Bromo-cyclic GMP did not mimic the inhibitory effects of the donors, suggesting that the neuroprotection was not the result of NO-stimulated neuronal cyclic GMP production. Furthermore, neuronal injury induced by exposure of cultures to H2O2 was not altered by the presence of Dea/NO, indicating the absence of a direct antioxidant effect. NONOates did, however, reduce NMDA-stimulated uptake of 45Ca2+, whereas high potassium-induced 45Ca2+ accumulation, a measurement of entry via voltage-gated calcium channels, was unaffected. The parallel reduction of 45Ca2+ accumulation and NMDA neurotoxicity by NONOates mimicked that seen with an NMDA receptor antagonist. Electrochemical measurements of NO via an NO-sensitive electrode demonstrated that neuroprotective concentrations of all donors produced appreciable amounts of NO over the 5-min time frame. Determination of the formation of NO+ equivalents, as assessed by N-nitrosation of 2,3-diaminonaphthylene, revealed little or no observable N-nitrosation by Sper/NO, GSNO, and SNAP with significant N-nitrosation observed by Papa/NO and Dea/NO. However, addition of ascorbate (400 microM) effectively prevented the nitrosation of 2,3-diaminonaphthylene produced by Dea/NO and Papa/NO without altering their neuroprotective properties or their effects on 45Ca2+ accumulation. Present results indicate that the intrinsic NO/NO+ characteristics of NO donor compounds may not be a good predictor of their ability to inhibit NMDA receptor-mediated neurotoxicity at the cellular level. Topics: Animals; Antioxidants; Calcium; Cells, Cultured; Cerebral Cortex; Cyclic GMP; Excitatory Amino Acid Agonists; Hydrazines; Intracellular Membranes; Mice; N-Methylaspartate; Neurons; Neuroprotective Agents; Neurotoxins; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Rats; Rats, Inbred Strains | 1999 |
Hypoxia modulates nitric oxide-induced regulation of NMDA receptor currents and neuronal cell death.
Nitric oxide (NO) released from a new chemical class of donors enhances N-methyl-D-aspartate (NMDA) channel activity. Using whole cell and single-channel patch-clamp techniques, we have shown that (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]-NO (PAPA-NO) and diethylamine NO, commonly termed NONOates, potentiate the glutamate-mediated response of recombinant rat NMDA receptors (NR1/NR2A) expressed in HEK-293 cells. The overall effect is an increase in both peak and steady-state whole cell currents induced by glutamate. Single-channel studies demonstrate a significant increase in open probability but no change in the mean single-channel open time or mean channel conductance. Reduction in oxygen levels increased and prolonged the PAPA-NO-induced change in both peak and steady-state glutamate currents in transfected HEK cells. PAPA-NO also enhanced cell death in primary cultures of rodent cortical neurons deprived of oxygen and glucose. This potentiation of neuronal injury was blocked by MK-801, indicating a critical involvement of NMDA receptor activation. The NO-induced increase in NMDA channel activity as well as NMDA receptor-mediated cell death provide firm evidence that NO modulates the NMDA channel in a manner consistent with both a physiological role under normoxic conditions and a pathophysiological role under hypoxic conditions. Topics: Animals; Cell Death; Cell Line; Electric Conductivity; Glutamic Acid; Humans; Hydrazines; Hypoxia; Mice; Mice, Inbred Strains; Neurons; Nitric Oxide; Nitrogen Oxides; Oxygen; Partial Pressure; Rats; Receptors, N-Methyl-D-Aspartate; Recombinant Proteins | 1999 |