pantetheine and 1-3-dibromo-2-propanone

pantetheine has been researched along with 1-3-dibromo-2-propanone* in 2 studies

Other Studies

2 other study(ies) available for pantetheine and 1-3-dibromo-2-propanone

ArticleYear
Dibromopropanone cross-linking of the phosphopantetheine and active-site cysteine thiols of the animal fatty acid synthase can occur both inter- and intrasubunit. Reevaluation of the side-by-side, antiparallel subunit model.
    The Journal of biological chemistry, 1999, Apr-23, Volume: 274, Issue:17

    The objective of this study was to test a new model for the homodimeric animal FAS which implies that the condensation reaction can be catalyzed by the amino-terminal beta-ketoacyl synthase domain in cooperation with the penultimate carboxyl-terminal acyl carrier protein domain of either subunit. Treatment of animal fatty acid synthase dimers with dibromopropanone generates three new molecular species with decreased electrophoretic mobilities; none of these species are formed by fatty acid synthase mutant dimers lacking either the active-site cysteine of the beta-ketoacyl synthase domain (C161A) or the phosphopantetheine thiol of the acyl carrier protein domain (S2151A). A double affinity-labeling strategy was used to isolate dimers that carried one or both mutations on one or both subunits; the heterodimers were treated with dibromopropanone and analyzed by a combination of sodium dodecyl sulfate/polyacrylamide gel electrophoresis, Western blotting, gel filtration, and matrix-assisted laser desorption mass spectrometry. Thus the two slowest moving of these species, which accounted for 45 and 15% of the total, were identified as doubly and singly cross-linked dimers, respectively, whereas the fastest moving species, which accounted for 35% of the total, was identified as originating from internally cross-linked subunits. These results show that the two polypeptides of the fatty acid synthase are oriented such that head-to-tail contacts are formed both between and within subunits, and provide the first structural evidence in support of the new model.

    Topics: Acetone; Animals; Binding Sites; Chromatography, Gel; Cysteine; Electrophoresis, Polyacrylamide Gel; Evaluation Studies as Topic; Fatty Acid Synthases; Hydrogen-Ion Concentration; Models, Chemical; Molecular Weight; Pantetheine; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Sulfhydryl Compounds

1999
Mammalian fatty acid synthetase is a structurally and functionally symmetrical dimer.
    European journal of biochemistry, 1985, Nov-04, Volume: 152, Issue:3

    We have explored a comprehensive experimental approach to determine whether the two condensing-enzyme active centers of the mammalian fatty acid synthetase are simultaneously functional. Our strategy involved utilization of trypsinized fatty acid synthetase, which is a nicked homodimer composed of two pairs of 125 + 95-kDa polypeptides. These core polypeptides lack the chain-terminating thioesterase domains but retain all other functional domains of the native enzyme and can assemble long-chain acyl moieties at a rate equal to that of the native enzyme. The 4'-phosphopantetheine content of these enzyme preparations, estimated from the amount of beta-alanine present, from the amount of taurine formed by performic acid oxidation and from the amount of carboxymethylcysteamine formed by alkylation with iodo[2-14C]acetate, was typically 0.86 mol/mol 95-kDa polypeptide. The stoichiometry of long-chain acyl-enzyme synthesis, measured with radiolabeled precursors, indicated that 0.84 mol acyl-chains were assembled/mol 95-kDa polypeptide. When the small amount of apoenzyme present is taken into account, this stoichiometry translates to 1.94 acyl chains per holoenzyme dimer. The 125-kDa polypeptide of one subunit could be cross-linked to the 95-kDa polypeptide of the other subunit by 1,3-dibromo-2-propanone yielding a single molecular species of 220 kDa. Cross-linking was accompanied by a loss of condensing-enzyme activity. This result is consistent with a structurally symmetrical model for the animal fatty acid synthetase [J.K. Stoops and S.J. Wakil (1981) J. Biol. Chem. 256, 5128-5133] in which the juxtaposed 4'-phosphopantetheine and cysteine thiols of opposing subunits that form the two potential catalytic centers for condensing activity are readily susceptible to cross-linking. Both half-maximal cross-linking and 50% inhibition of activity were observed with 1 mol 1,3-dibromo-2-propanone bound/mol enzyme. After assembly of long-chain acyl moieties on the 4'-phosphopantetheine residues, no vacant condensing-enzyme active sites were demonstrable either by cross-linking with 1,3-dibromo-2-propanone or by formation of carboxymethylcysteamine on treatment with iodoacetate. These results are consistent with a structurally and functionally symmetrical model for the mammalian fatty acid synthetase in which the two condensation sites are simultaneously active.

    Topics: Acetone; Alkylation; Animals; Binding Sites; Chemical Phenomena; Chemistry; Chromatography, High Pressure Liquid; Electrophoresis, Polyacrylamide Gel; Fatty Acid Synthases; Female; Hydrolysis; Lactation; Liver; Mammary Glands, Animal; Molecular Weight; Pantetheine; Pregnancy; Rats; Trypsin

1985