pamaqueside has been researched along with tiqueside* in 3 studies
3 other study(ies) available for pamaqueside and tiqueside
Article | Year |
---|---|
Intestinal absorption of cholesterol is mediated by a saturable, inhibitable transporter.
Although the mechanism by which dietary cholesterol is absorbed from the intestine is poorly understood, it is generally accepted that cholesterol is absorbed from bile acid micelles in the jejunum. Once inside the enterocytes, cholesterol is esterified by the action of acyl-coenzyme A:cholesterol acyltransferase (ACAT), assembled into chylomicrons, and secreted into the lymph. In this work, mechanistic aspects of cholesterol absorption were probed using compounds that block cholesterol absorption in hamsters. Sterol glycoside cholesterol absorption inhibitors, exemplified by L-166,143, (3 beta, 5 alpha,25R)-3-[(4", 6"-bis[2-fluoro-phenylcarbamoyl]-B-D-cellobiosyl)oxy]-spirostan -11-on e, potently blocked absorption of radioactive cholesterol, and the potencies of several analogs correlated with their ability to lower plasma cholesterol. Each molecule of L-166,143 blocked the uptake of 500 molecules of cholesterol, rendering it unlikely that the inhibitor interacts directly with the cholesterol or bile acid. Radiolabeled L-166,143 bound to the mucosa and binding was blocked by active, but not inactive, cholesterol absorption inhibitors. Subtle changes in the structure of sterol glycosides yielded large changes in their ability to block both cholesterol absorption and binding of radiolabeled L-166,143. Large species-to-species variation in potency was also observed. These lines of evidence support the interpretation that dietary cholesterol is absorbed via a specific transporter found in the intestinal mucosa. Topics: Animals; Anticholesteremic Agents; Bile Acids and Salts; Binding Sites; Biological Transport; Cholesterol, Dietary; Cricetinae; Dogs; Down-Regulation; Enzyme Inhibitors; Imidazoles; Intestinal Absorption; Intestinal Mucosa; Male; Mesocricetus; Mice; Microvilli; Molecular Structure; Rats; Saponins; Simvastatin; Species Specificity; Spirostans; Structure-Activity Relationship; Tritium; Urea | 2000 |
Comparison of synthetic saponin cholesterol absorption inhibitors in rabbits: evidence for a non-stoichiometric, intestinal mechanism of action.
The hypocholesterolemic activities of pamaqueside and tiqueside, two structurally similar saponins, were evaluated in cholesterol-fed rabbits. The pharmacological profiles of the saponins were virtually identical: both dose-dependently decreased the intestinal absorption of labeled cholesterol 25-75%, increased fecal neutral sterol excretion up to 2.5-fold, and decreased hepatic cholesterol content 10-55%. High doses of pamaqueside (>5 mg/kg) or tiqueside (>125 mg/kg) completely prevented hypercholesterolemia. Decreases in plasma and hepatic cholesterol levels were strongly correlated with increased neutral sterol excretion. Ratios of neutral sterol excreted to pamaqueside administered were greater than 1:1 at all doses, in opposition to the formation of a stoichiometric complex previously suggested for tiqueside and other saponins. Ratios in tiqueside-treated rabbits were less than unity, a reflection of its lower potency. Pamaqueside-treated rabbits exhibited a more rapid decline in plasma cholesterol concentrations than control animals fed a cholesterol-free diet, indicating that the compound also inhibited the absorption of biliary cholesterol. Intravenous administration of pamaqueside had no effect on plasma cholesterol levels despite plasma levels twice those observed in rabbits given pamaqueside orally. These data indicate that pamaqueside and tiqueside induce hypocholesterolemia by blocking lumenal cholesterol absorption via a mechanism that apparently differs from the stoichiometric complexation of cholesterol hypothesized for other saponins. Topics: Administration, Oral; Animals; Anticholesteremic Agents; Bile; Cholesterol; Cholesterol, Dietary; Cholesterol, HDL; Feces; Hypercholesterolemia; Injections, Intravenous; Intestinal Absorption; Liver; Male; Molecular Structure; Rabbits; Saponins; Sterols | 1999 |
Steroidal glycoside cholesterol absorption inhibitors.
We have explored the use of steroidal glycosides as cholesterol absorption inhibitors which act through an unknown mechanism. The lead for this program was tigogenin cellobioside (1, tiqueside) which is a weak inhibitor (ED50 = 60 mg/kg) as measured in an acute hamster cholesterol absorption assay. Modification of the steroid portion of the molecule led to the discovery of 11-ketotigogenin cellobioside (5, pamaqueside) which has an ED50 of 2 mg/kg. Replacement of the cellobiose with other sugars failed to provide more potent analogs. However, large improvements in potency were realized through modification of the hydroxyl groups on the cellobiose. This strategy ultimately led to the 4", 6"-bis[(2-fluorophenyl)carbamoyl]-beta-D-cellobiosyl derivative of 11-ketotigogenin (51) with an ED50 of 0.025 mg/kg in the hamster assay, as well as the corresponding hecogenin analog 64 (ED50 = 0.07 mg/kg). Topics: Absorption; Animals; Cholesterol; Cricetinae; Drug Design; Hypolipidemic Agents; Liver; Models, Chemical; Saponins; Structure-Activity Relationship | 1997 |