palytoxin and ovatoxin-a

palytoxin has been researched along with ovatoxin-a* in 7 studies

Reviews

1 review(s) available for palytoxin and ovatoxin-a

ArticleYear
Palytoxin congeners.
    Archives of toxicology, 2018, Volume: 92, Issue:1

    Palytoxin, isolated from a zoanthid of the genus Palythoa, is the most potent marine toxin known. Intoxication by palytoxin leads to vasoconstriction, hemorrhage, ataxia, muscle weakness, ventricular fibrillation, pulmonary hypertension, ischemia and death. Palytoxin and its numerous derivatives (congeners) may enter the food chain and accumulate mainly in fishes and crabs, causing severe human intoxication and death following ingestion of contaminated products. Furthermore, toxic effects in individuals exposed via inhalation or skin contact to marine aerosol in coincidence with Ostreopsis blooms, have been reported. Blooms of the benthic dinoflagellate Ostreopsis cf. ovata are a concern in the Mediterranean Sea, since this species produces a wide range of palytoxin-like compounds listed among the most potent marine toxins. Thus, the formerly unsuspected broad distribution of the benthic dinoflagellate Ostreopsis spp. has recently posed a problem of risk assessment for human health. Palytoxin has a strong potential for toxicity in humans and animals, and currently this toxin is of great concern worldwide. This review summarized and discussed the pharmacology and toxicology data of palytoxin and its congeners, including their cytotoxicity, human and animal toxicities. Moreover, the risk assessment and their control strategies including prevention and treatment assays were evaluated.

    Topics: Acrylamides; Animals; Bridged Bicyclo Compounds, Heterocyclic; Cnidarian Venoms; Humans; Marine Toxins; Pyrans; Risk Assessment

2018

Other Studies

6 other study(ies) available for palytoxin and ovatoxin-a

ArticleYear
Toxicity of palytoxin, purified ovatoxin-a, ovatoxin-d and extracts of Ostreopsis cf. ovata on the Caco-2 intestinal barrier model.
    Environmental toxicology and pharmacology, 2022, Volume: 94

    Human intoxications in the Mediterranean Sea have been linked to blooms of the dinoflagellate Ostreopsis cf. ovata, producer of palytoxin (PlTX)-like toxins called ovatoxins (OVTXs). Exposure routes include only inhalation and contact, although PlTX-poisoning by seafood has been described in tropical regions. To address the impact of OVTXs on the intestinal barrier, dinoflagellate extracts, purified OVTX-a and -d and PlTX were tested on differentiated Caco-2 cells. Viability, inflammatory response and barrier integrity were recorded after 24 h treatment. OVTX-a and -d were not cytotoxic up to 20 ng/mL but increased IL-8 release, although to a lesser extent compared to PlTX. While PlTX and OVTX-a (at 0.5 and 5 ng/mL respectively) affected intestinal barrier integrity, OVTX-d up to 5 ng/mL did not. Overall, OVTX-d was shown to be less toxic than OVTX-a and PlTX. Therefore, oral exposure to OVTX-a and -d could provoked lower acute toxicity than PlTX.

    Topics: Acrylamides; Caco-2 Cells; Cnidarian Venoms; Dinoflagellida; Humans; Marine Toxins

2022
Ovatoxin-a, A Palytoxin Analogue Isolated from Ostreopsis cf. ovata Fukuyo: Cytotoxic Activity and ELISA Detection.
    Environmental science & technology, 2016, Feb-02, Volume: 50, Issue:3

    This study provides the first evaluation of the cytotoxic effects of the recently identified palytoxin (PLTX) analog, ovatoxin-a (OVTX-a), the major toxin produced by Ostreopsis cf. ovata in the Mediterranean Sea. Its increasing detection during Ostreopsis blooms and in seafood highlights the need to characterize its toxic effects and to set up appropriate detection methods. OVTX-a is about 100 fold less potent than PLTX in reducing HaCaT cells viability (EC50 = 1.1 × 10(-9) M vs 1.8 × 10(-11) M, MTT test) in agreement with a reduced binding affinity (Kd = 1.2 × 10(-9) vs 2.7 × 10(-11) M, saturation experiments on intact cells). Similarly, OVTX-a hemolytic effect is lower than that of the reference PLTX compound. Ost-D shows the lowest cytotoxicity toward HaCaT keratinocytes, suggesting the lack of a hydroxyl group at C44 as a critical feature for PLTXs cytotoxic effects. A sandwich ELISA developed for PLTX detects also OVTX-a in a sensitive (LOD = 4.2 and LOQ = 5.6 ng/mL) and accurate manner (Bias = 0.3%), also in O. cf. ovata extracts and contaminated mussels. Although in vitro OVTX-a appears less toxic than PLTX, its cytotoxicity at nanomolar concentrations after short exposure time rises some concern for human health. The sandwich ELISA can be a viable screening method for OVTXs detection in monitoring program.

    Topics: Acrylamides; Animals; Bivalvia; Cell Line; Cnidarian Venoms; Dinoflagellida; Enzyme-Linked Immunosorbent Assay; Humans; Marine Toxins; Mediterranean Sea; Seafood; Shellfish; Toxicity Tests

2016
Complex toxin profile of French Mediterranean Ostreopsis cf. ovata strains, seafood accumulation and ovatoxins prepurification.
    Marine drugs, 2014, May-13, Volume: 12, Issue:5

    Ostreopsis cf. ovata produces palytoxin analogues including ovatoxins (OVTXs) and a putative palytoxin (p-PLTX), which can accumulate in marine organisms and may possibly lead to food intoxication. However, purified ovatoxins are not widely available and their toxicities are still unknown. The aim of this study was to improve understanding of the ecophysiology of Ostreopsis cf. ovata and its toxin production as well as to optimize the purification process for ovatoxin. During Ostreopsis blooms in 2011 and 2012 in Villefranche-sur-Mer (France, NW Mediterranean Sea), microalgae epiphytic cells and marine organisms were collected and analyzed both by LC-MS/MS and hemolysis assay. Results obtained with these two methods were comparable, suggesting ovatoxins have hemolytic properties. An average of 223 μg·kg-1 of palytoxin equivalent of whole flesh was found, thus exceeding the threshold of 30 μg·kg-1 in shellfish recommended by the European Food Safety Authority (EFSA). Ostreopsis cells showed the same toxin profile both in situ and in laboratory culture, with ovatoxin-a (OVTX-a) being the most abundant analogue (~50%), followed by OVTX-b (~15%), p-PLTX (12%), OVTX-d (8%), OVTX-c (5%) and OVTX-e (4%). Ostreopsis cf. ovata produced up to 2 g of biomass per L of culture, with a maximum concentration of 300 pg PLTX equivalent cell-1. Thus, an approximate amount of 10 mg of PLTX-group toxins may be produced with 10 L of this strain. Toxin extracts obtained from collected biomass were purified using different techniques such as liquid-liquid partition or size exclusion. Among these methods, open-column chromatography with Sephadex LH20 phase yielded the best results with a cleanup efficiency of 93% and recovery of about 85%, representing an increase of toxin percentage by 13 fold. Hence, this purification step should be incorporated into future isolation exercises.

    Topics: Acrylamides; Animals; Anthozoa; Cnidarian Venoms; Dinoflagellida; France; Hemolysis; In Vitro Techniques; Marine Toxins; Mediterranean Sea; Seafood; Seawater; Sheep

2014
Ovatoxin-a and palytoxin accumulation in seafood in relation to Ostreopsis cf. ovata blooms on the French Mediterranean coast.
    Marine drugs, 2012, Volume: 10, Issue:2

    Dinoflagellates of the genus Ostreopsis are known to cause (often fatal) food poisoning in tropical coastal areas following the accumulation of palytoxin (PLTX) and/or its analogues (PLTX group) in crabs, sea urchins or fish. Ostreopsis spp. occurrence is presently increasing in the northern to north western Mediterranean Sea (Italy, Spain, Greece and France), probably in response to climate change. In France, Ostreopsis. cf. ovata has been associated with toxic events during summer 2006, at Morgiret, off the coast of Marseille, and a specific monitoring has been designed and implemented since 2007. Results from 2008 and 2009 showed that there is a real danger of human poisoning, as these demonstrated bioaccumulation of the PLTX group (PLTX and ovatoxin-a) in both filter-feeding bivalve molluscs (mussels) and herbivorous echinoderms (sea urchins). The total content accumulated in urchins reached 450 µg PLTX eq/kg total flesh (summer 2008). In mussels, the maximum was 230 µg eq PLTX/kg (summer 2009) compared with a maximum of 360 µg found in sea urchins during the same period at the same site. This publication brings together scientific knowledge obtained about the summer development of Ostreopsis spp. in France during 2007, 2008 and 2009.

    Topics: Acrylamides; Animals; Bivalvia; Chromatography, High Pressure Liquid; Cnidarian Venoms; Dinoflagellida; Environmental Monitoring; Food Contamination; Foodborne Diseases; France; Harmful Algal Bloom; Limit of Detection; Marine Toxins; Mediterranean Sea; Phylogeny; Sea Urchins; Seafood; Seasons; Shellfish; Shellfish Poisoning; Species Specificity; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry

2012
A sensitive assay for palytoxins, ovatoxins and ostreocins using LC-MS/MS analysis of cleavage fragments from micro-scale oxidation.
    Toxicon : official journal of the International Society on Toxinology, 2012, Volume: 60, Issue:5

    Palytoxin is a highly toxic non-proteinaceous marine natural product that can pass through the food chain and result in human illnesses. A recent review by the European Food Safety Authority concluded that palytoxin requires regulation in seafood and a limit of 30 μg kg⁻¹ for shellfish flesh was suggested. Current methods based on LC-MS detection of intact palytoxins do not have sufficient sensitivity to enforce this limit for palytoxin. To improve sensitivity for trace analysis, a novel screen approach has been developed that uses LC-MS/MS analysis of substructures generated by oxidative cleavage of vicinal diol groups present in the intact toxin. Oxidation of palytoxins, ovatoxins or ostreocins using periodic acid generates two nitrogen-containing aldehyde fragments; an amino aldehyde common to these toxins, and an amide aldehyde that may vary depending on toxin type. Conditions for micro-scale oxidation of palytoxin were optimised, which include a novel SPE cleanup and on-column oxidation step. Rapid analysis of cleavage fragments was established using LC-MS/MS. Linear calibrations were established for the amino aldehyde from a palytoxin reference standard, which is suitable for all known palytoxin-like compounds, and for the confirmatory amide aldehydes of palytoxin and ostreocin-D. Palytoxin recoveries (at 10 μg kg⁻¹) from shellfish and fish tissues were 114-119% (as amine aldehyde) and 90-115% (as amide aldehyde) with RSDs for both of ≤ 18% (all tissues, n = 12). The method LOD was determined to be approximately 1 ng mL⁻¹ and the LOQ 4 ng mL⁻¹, which corresponds to 10 μg kg⁻¹ in tissue (flesh of shellfish or fish). The method has potential for use in research and is sufficiently sensitive for regulatory testing, should it be required.

    Topics: Acrylamides; Animals; Chromatography, Liquid; Cnidarian Venoms; Limit of Detection; Marine Toxins; Molecular Structure; Oxidation-Reduction; Periodic Acid; Shellfish; Tandem Mass Spectrometry

2012
Stereochemical studies on ovatoxin-a.
    Chemistry (Weinheim an der Bergstrasse, Germany), 2012, Dec-21, Volume: 18, Issue:52

    Ovatoxin-a is the main toxin produced by Ostreopsis ovata, a benthic dinoflagellate that has bloomed massively across the Mediterranean basin over the past years, inflicting both human and environmental suffering. Ovatoxin-a has recently been isolated from cultures of O. ovata and structurally identified as an analogue of palytoxin: in comparison with palytoxin, ovatoxin-a lacks three hydroxy groups at the 17-, 44- and 64-positions, but features an extra hydroxy functionality at the 42-position. Herein we report on the NMR-based elucidation of the stereochemistry of ovatoxin-a, which includes 7 stereogenic double bonds and 62 asymmetric carbon atoms. Understanding the full stereochemistry of ovatoxin-a is a step towards the elucidation of its mechanism of action on a molecular level.

    Topics: Acrylamides; Chromatography, High Pressure Liquid; Cnidarian Venoms; Dinoflagellida; Magnetic Resonance Spectroscopy; Marine Toxins; Mass Spectrometry; Models, Molecular; Molecular Conformation; Stereoisomerism

2012