palmidrol and piperidines

palmidrol has been researched along with piperidines in 32 studies

Research

Studies (32)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (6.25)18.2507
2000's18 (56.25)29.6817
2010's11 (34.38)24.3611
2020's1 (3.13)2.80

Authors

AuthorsStudies
Fields, HL; Meng, ID1
Giuffrida, A; Kerr, TM; Navarro, M; Parsons, LH; Piomelli, D; Rodríguez de Fonseca, F1
Kishimoto, S; Kodaka, T; Kondo, S; Miyashita, T; Nakane, S; Sugiura, T; Suhara, Y; Takayama, H; Waku, K1
Brockie, HC; Pertwee, RG; Ross, RA1
Baker, D; Bisogno, T; Brown, P; Croxford, JL; Di Marzo , V; Fezza, F; Khanolkar, A; Layward, L; Makriyannis, A; Pertwee, RG; Pryce, G1
Rice, AS1
Bottrill, FE; Ford, WR; Hiley, CR; Ho, WS; White, R1
Capasso, F; Capasso, R; Di Marzo, V; Fezza, F; Izzo, AA; Mascolo, N; Pinto, A1
Farquhar-Smith, WP; Jaggar, SI; Rice, AS1
Bouchard, JF; Lamontagne, D; Lépicier, P1
Bouchard, JF; Lagneux, C; Lamontagne, D; Lépicier, P1
Bölcskei, K; Helyes, Z; Németh, J; Pintér, E; Szolcsányi, J; Thán, M1
Abe, T; Arisaka, O; Morimoto, H; Ohori, M; Yamada, Y; Yoshihara, S2
Cichewicz, DL; Haller, VL; Welch, SP1
Blackbeard, J; Hasnie, F; Lambert, DM; Pheby, T; Rice, AS; Segerdahl, AR; Vandevoorde, S; Wallace, VC1
Pertwee, RG1
Bernardini, D; Colavito, D; D'Arrigo, A; Dalle Carbonare, M; Dam, M; Del Giudice, E; Fabris, M; Leon, A; Stecca, A1
Astarita, G; Eisenstein, SA; Hohmann, AG; Moise, AM; Piomelli, D1
Goldberg, SR; Luchicchi, A; Melis, M; Muntoni, AL; Pillolla, G; Pistis, M; Yasar, S1
Guijarro, A; Jumpertz, R; Krakoff, J; Piomelli, D; Pratley, RE1
Khodagholi, F; Khoramian Tusi, S; Majidi, M; Mansouri, Z; Mousavi, Z; Naderi, N1
Kumar, A; Kumar, P; Qiao, Z; Song, ZH1
Duarte, ID; Pacheco, Dda F; Romero, TR1
Avagliano, C; Calignano, A; Citraro, R; Cosco, D; D'Agostino, G; De Sarro, G; Di Marzo, V; Gatta, L; Guida, F; Maione, S; Petrosino, S; Russo, E; Russo, R; Scicchitano, F; van Luijtelaar, G; van Rijn, CM1
Bailey, CR; Carson, RE; Corsi-Travali, S; Gujarro-Anton, A; Henry, S; Huang, Y; Lin, SF; Najafzadeh, S; Neumeister, A; Normandin, MD; Pietrzak, RH; Piomelli, D; Potenza, MN; Ropchan, J; Zheng, MQ1
Aveta, T; Borrelli, F; Buono, L; Capasso, R; Di Marzo, V; Izzo, AA; Orlando, P; Pagano, E1
Burlakova, N; Coicou, L; Khasabova, IA; Lewandowski, CT; Lindberg, AE; Paz, J; Seybold, VS; Simone, DA; Yao, X1
Alhouayek, M; Bottemanne, P; Cani, PD; Lambert, DM; Makriyannis, A; Muccioli, GG; Subramanian, KV1
Alhouayek, M; Bottemanne, P; Makriyannis, A; Muccioli, GG1
Babinska, Z; Bari, M; D'Addario, C; Di Bartolomeo, M; Di Marco, R; Di Marzo, V; Drago, F; Drazanova, E; Giurdanella, G; Iannotti, FA; Maccarrone, M; Mechoulam, R; Micale, V; Pekarik, V; Piscitelli, F; Ruda-Kucerova, J; Salomone, S; Starcuk, Z; Stark, T; Sulcova, A; Wotjak, CT1
Kiso, T; Sekizawa, T; Watabiki, T1

Reviews

2 review(s) available for palmidrol and piperidines

ArticleYear
Cannabinoids and pain.
    Current opinion in investigational drugs (London, England : 2000), 2001, Volume: 2, Issue:3

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Benzoxazines; Brain; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Cell Membrane; Clinical Trials as Topic; Disease Models, Animal; Drug Design; Drug Interactions; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Injections, Spinal; Molecular Structure; Morpholines; Naphthalenes; Pain; Palmitates; Palmitic Acids; Piperidines; Plant Extracts; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Spinal Cord

2001
GPR55: a new member of the cannabinoid receptor clan?
    British journal of pharmacology, 2007, Volume: 152, Issue:7

    Topics: Amides; Animals; Arachidonic Acids; Cannabinoids; Dronabinol; Endocannabinoids; Ethanolamines; Humans; Oleic Acids; Palmitic Acids; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, G-Protein-Coupled

2007

Other Studies

30 other study(ies) available for palmidrol and piperidines

ArticleYear
Watching the pot boil.
    Nature medicine, 1998, Volume: 4, Issue:9

    Topics: Amides; Analgesics; Animals; Arachidonic Acids; Camphanes; Cannabinoids; Endocannabinoids; Ethanolamines; Mice; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant

1998
Dopamine activation of endogenous cannabinoid signaling in dorsal striatum.
    Nature neuroscience, 1999, Volume: 2, Issue:4

    Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Amides; Animals; Arachidonic Acids; Calcium; Cannabinoid Receptor Modulators; Corpus Striatum; Dopamine; Dopamine Agonists; Dopamine Antagonists; Endocannabinoids; Ethanolamines; Gas Chromatography-Mass Spectrometry; Glycerides; Hyperkinesis; Male; Microdialysis; Motor Activity; Oleic Acids; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Potassium; Pyrazoles; Quinpirole; Raclopride; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Dopamine D2; Receptors, Drug; Rimonabant; Salicylamides; Signal Transduction; Single-Blind Method; Sodium; Tetrodotoxin

1999
Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells.
    The Journal of biological chemistry, 2000, Jan-07, Volume: 275, Issue:1

    Topics: Amides; Arachidonic Acids; Calcium Signaling; Camphanes; Cannabinoids; Cyclohexanols; Cyclooxygenase Inhibitors; Drug Interactions; Endocannabinoids; Ethanolamines; Glycerides; HL-60 Cells; Humans; Ligands; Lipoxygenase Inhibitors; Molecular Mimicry; Palmitic Acids; Pertussis Toxin; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; RNA, Messenger; Structure-Activity Relationship; Virulence Factors, Bordetella

2000
Inhibition of nitric oxide production in RAW264.7 macrophages by cannabinoids and palmitoylethanolamide.
    European journal of pharmacology, 2000, Aug-04, Volume: 401, Issue:2

    Topics: Amides; Animals; Benzoxazines; Camphanes; Cannabinoids; Cell Line; CHO Cells; Colforsin; Cricetinae; Cyclic AMP; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Humans; Lipopolysaccharides; Macrophages; Morpholines; Naphthalenes; Nitric Oxide; Palmitic Acids; Pertussis Toxin; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Stereoisomerism; Time Factors; Virulence Factors, Bordetella

2000
Endocannabinoids control spasticity in a multiple sclerosis model.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2001, Volume: 15, Issue:2

    Topics: Amides; Animals; Arachidonic Acids; Brain; Cannabinoid Receptor Modulators; Cannabinoids; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Endocannabinoids; Ethanolamines; Glycerides; Humans; Mice; Mice, Inbred Strains; Multiple Sclerosis; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Spasm; Spinal Cord

2001
Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries.
    British journal of pharmacology, 2001, Volume: 134, Issue:4

    Topics: Amides; Animals; Arachidonic Acids; Capsaicin; Coronary Vessels; Dose-Response Relationship, Drug; Endocannabinoids; Endothelium, Vascular; Ethanolamines; Gap Junctions; Glycyrrhetinic Acid; In Vitro Techniques; Indoles; Indomethacin; Male; Palmitic Acids; Peptides; Piperidines; Polyunsaturated Alkamides; Potassium Channel Blockers; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Serotonin; Tetraethylammonium; Vasodilation

2001
Inhibitory effect of palmitoylethanolamide on gastrointestinal motility in mice.
    British journal of pharmacology, 2001, Volume: 134, Issue:5

    Topics: Adrenergic alpha-Antagonists; Amides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Camphanes; Croton Oil; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Gastrointestinal Motility; Gastrointestinal Transit; Hexamethonium; Inflammation; Intestine, Small; Male; Mice; Mice, Inbred ICR; Naloxone; NG-Nitroarginine Methyl Ester; Nicotinic Antagonists; Nitric Oxide Synthase; Palmitic Acids; Phenylmethylsulfonyl Fluoride; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Yohimbine

2001
Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB(1) and CB(2)-like receptors.
    Pain, 2002, Volume: 97, Issue:1-2

    Topics: Amides; Animals; Arachidonic Acids; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Endocannabinoids; Ethanolamines; Female; Hyperalgesia; Nerve Growth Factor; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-fos; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Reflex, Abnormal; Rimonabant; Spinal Cord; Urinary Bladder; Visceral Afferents

2002
Contribution of endocannabinoids in the endothelial protection afforded by ischemic preconditioning in the isolated rat heart.
    Life sciences, 2003, Mar-07, Volume: 72, Issue:16

    Topics: Amides; Animals; Arachidonic Acids; Blotting, Western; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Coronary Vessels; Endocannabinoids; Endothelium, Vascular; Ethanolamines; Fatty Acids, Unsaturated; Glycerides; Heart; Ischemic Preconditioning, Myocardial; Male; Myocardium; Nitroprusside; Palmitic Acids; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Serotonin; Vasodilation

2003
Endocannabinoids protect the rat isolated heart against ischaemia.
    British journal of pharmacology, 2003, Volume: 139, Issue:4

    Topics: Amides; Animals; Arachidonic Acids; Biomarkers; Blotting, Western; Camphanes; Cannabinoid Receptor Modulators; Endocannabinoids; Ethanolamines; Glycerides; Heart; Imidazoles; L-Lactate Dehydrogenase; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; p38 Mitogen-Activated Protein Kinases; Palmitic Acids; Piperidines; Protein Kinase C; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Rimonabant; Signal Transduction

2003
Inhibitory effect of anandamide on resiniferatoxin-induced sensory neuropeptide release in vivo and neuropathic hyperalgesia in the rat.
    Life sciences, 2003, Sep-19, Volume: 73, Issue:18

    Topics: Amides; Animals; Arachidonic Acids; Calcitonin Gene-Related Peptide; Camphanes; Cannabinoids; Diterpenes; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Hyperalgesia; Injections, Intravenous; Male; Neuropeptides; Neurotoxins; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Rimonabant; Sciatic Nerve; Sciatic Neuropathy; Somatostatin

2003
Endogenous cannabinoid receptor agonists inhibit neurogenic inflammations in guinea pig airways.
    International archives of allergy and immunology, 2005, Volume: 138, Issue:1

    Topics: Amides; Animals; Arachidonic Acids; Bronchi; Bronchoconstriction; Calcium Channel Blockers; Camphanes; Cannabinoid Receptor Agonists; Capsaicin; Electric Stimulation; Endocannabinoids; Ethanolamines; Guinea Pigs; Male; Muscle Contraction; Muscle, Smooth; Nerve Fibers, Unmyelinated; Neurogenic Inflammation; Organ Culture Techniques; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Potassium Channel Blockers; Pyrazoles; Receptors, Cannabinoid; Rimonabant; Substance P

2005
Cannabinoid receptor agonists inhibit Ca(2+) influx to synaptosomes from rat brain.
    Pharmacology, 2006, Volume: 76, Issue:4

    Topics: Amides; Animals; Benzoxazines; Biological Transport; Brain; Calcium; Camphanes; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Dose-Response Relationship, Drug; Elapid Venoms; Endocannabinoids; Ethanolamines; In Vitro Techniques; Male; Morpholines; Naphthalenes; Palmitic Acids; Piperidines; Potassium Channel Blockers; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Synaptosomes

2006
Non-cannabinoid CB1, non-cannabinoid CB2 antinociceptive effects of several novel compounds in the PPQ stretch test in mice.
    European journal of pharmacology, 2006, Sep-28, Volume: 546, Issue:1-3

    Topics: Acetaminophen; Amides; Analgesics; Animals; Arachidonic Acids; Benzamides; Benzoquinones; Camphanes; Capsaicin; Carbamates; Dose-Response Relationship, Drug; Dronabinol; Endocannabinoids; Ethanolamines; Hyperalgesia; Male; Mesencephalon; Mice; Mice, Inbred ICR; Narcotic Antagonists; Pain; Palmitic Acids; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Opioid; Rimonabant; Spinal Cord; TRPV Cation Channels

2006
The effect of the palmitoylethanolamide analogue, palmitoylallylamide (L-29) on pain behaviour in rodent models of neuropathy.
    British journal of pharmacology, 2007, Volume: 151, Issue:7

    Topics: Amides; Amines; Animals; Behavior, Animal; Camphanes; Cyclohexanecarboxylic Acids; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Gabapentin; gamma-Aminobutyric Acid; Hindlimb; Indoles; Injections, Intraperitoneal; Male; Pain; Pain Measurement; Pain Threshold; Palmitic Acids; Physical Stimulation; Piperidines; PPAR alpha; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Sciatic Neuropathy; Temperature; Zalcitabine

2007
A saturated N-acylethanolamine other than N-palmitoyl ethanolamine with anti-inflammatory properties: a neglected story...
    Journal of neuroendocrinology, 2008, Volume: 20 Suppl 1

    Topics: Amides; Animals; Anti-Inflammatory Agents; Benzoxazines; Body Temperature; Camphanes; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cannabinoids; Ear Auricle; Edema; Endocannabinoids; Ethanolamines; Fatty Acids; Female; Inflammation; Mice; Mice, Inbred BALB C; Morpholines; Naphthalenes; Palmitic Acids; Passive Cutaneous Anaphylaxis; Piperidines; Pyrazoles; Rimonabant; Stearic Acids; Time Factors

2008
An endocannabinoid signaling system modulates anxiety-like behavior in male Syrian hamsters.
    Psychopharmacology, 2008, Volume: 200, Issue:3

    Topics: Aggression; Amides; Amidohydrolases; Animals; Arousal; Autoradiography; Benzamides; Brain; Cannabinoid Receptor Modulators; Carbamates; Cricetinae; Dominance-Subordination; Endocannabinoids; Ethanolamines; Fear; Male; Maze Learning; Mesocricetus; Oleic Acids; Palmitic Acids; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Rotarod Performance Test; Signal Transduction; Social Environment

2008
Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2008, Dec-17, Volume: 28, Issue:51

    Topics: Amides; Amidohydrolases; Animals; Appetite Depressants; Arachidonic Acids; Benzamides; Cannabinoid Receptor Antagonists; Carbamates; Dopamine; Endocannabinoids; Enzyme Activation; Enzyme Inhibitors; Ethanolamines; Injections, Intraventricular; Lipoxygenase Inhibitors; Male; Neurons; Nicotine; Oleic Acids; Organ Culture Techniques; Palmitic Acids; Patch-Clamp Techniques; Piperidines; PPAR alpha; Protein-Tyrosine Kinases; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Rimonabant; Ventral Tegmental Area

2008
Central and peripheral endocannabinoids and cognate acylethanolamides in humans: association with race, adiposity, and energy expenditure.
    The Journal of clinical endocrinology and metabolism, 2011, Volume: 96, Issue:3

    Topics: Absorptiometry, Photon; Adiposity; Amides; Anti-Obesity Agents; Arachidonic Acids; Blood Glucose; Cannabinoid Receptor Modulators; Endocannabinoids; Energy Metabolism; Ethanolamines; Ethnicity; Glycerides; Humans; Insulin; Leptin; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant

2011
The interaction between intrathecal administration of low doses of palmitoylethanolamide and AM251 in formalin-induced pain related behavior and spinal cord IL1-β expression in rats.
    Neurochemical research, 2012, Volume: 37, Issue:4

    Topics: Amides; Animals; Drug Interactions; Endocannabinoids; Ethanolamines; Injections, Spinal; Interleukin-1beta; Male; Pain; Pain Measurement; Palmitic Acids; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; Spinal Cord

2012
Effects of palmitoylethanolamide on aqueous humor outflow.
    Investigative ophthalmology & visual science, 2012, Jul-03, Volume: 53, Issue:8

    Topics: Amides; Animals; Aqueous Humor; Blotting, Western; Camphanes; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Activation; Ethanolamines; Humans; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Organ Culture Techniques; Oxazoles; Palmitic Acids; Phosphorylation; Piperidines; PPAR alpha; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; Rimonabant; Swine; Trabecular Meshwork; Tyrosine

2012
Probable involvement of Ca(2+)-activated Cl(-) channels (CaCCs) in the activation of CB1 cannabinoid receptors.
    Life sciences, 2013, May-02, Volume: 92, Issue:14-16

    Topics: Amides; Analysis of Variance; Animals; Arachidonic Acids; Calcium Channel Blockers; Cannabinoid Receptor Agonists; Chloride Channels; Dinoprostone; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Hyperalgesia; Indoles; Male; Niflumic Acid; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2013
Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy.
    Neuropharmacology, 2013, Volume: 69

    Topics: Amides; Animals; Anticonvulsants; Arachidonic Acids; Calcium Channel Blockers; Cannabinoid Receptor Antagonists; Dose-Response Relationship, Drug; Electroencephalography; Endocannabinoids; Epilepsy, Absence; Ethanolamines; Glycerides; Injections, Intraventricular; Lipid Metabolism; Male; Oxazoles; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; PPAR alpha; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Tyrosine

2013
Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study.
    Molecular psychiatry, 2013, Volume: 18, Issue:9

    Topics: Adult; Amides; Analysis of Variance; Arachidonic Acids; Brain; Endocannabinoids; Ethanolamines; Female; Glycerides; Humans; Hydrocortisone; Imidazoles; Logistic Models; Male; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Radionuclide Imaging; Receptor, Cannabinoid, CB1; Stress Disorders, Post-Traumatic; Young Adult

2013
Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB₁ receptors and TRPV1 channels.
    British journal of pharmacology, 2014, Volume: 171, Issue:17

    Topics: Amides; Animals; Colitis; Disease Models, Animal; Ethanolamines; Gastrointestinal Motility; Inflammation; Injections, Intraperitoneal; Irritable Bowel Syndrome; Male; Mice; Mice, Inbred ICR; Mustard Plant; Palmitic Acids; Piperidines; Plant Oils; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; RNA, Messenger; TRPV Cation Channels

2014
JZL184 is anti-hyperalgesic in a murine model of cisplatin-induced peripheral neuropathy.
    Pharmacological research, 2014, Volume: 90

    Topics: Amides; Analgesics; Animals; Antineoplastic Agents; Arachidonic Acids; Benzodioxoles; Cells, Cultured; Cisplatin; Disease Models, Animal; Endocannabinoids; Ethanolamines; Ganglia, Spinal; Glycerides; Hyperalgesia; Indoles; Male; Mesencephalon; Mice; Mice, Inbred C3H; Monoacylglycerol Lipases; Morpholines; Neuralgia; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Skin; Spinal Cord

2014
N-Acylethanolamine-hydrolyzing acid amidase inhibition increases colon N-palmitoylethanolamine levels and counteracts murine colitis.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2015, Volume: 29, Issue:2

    Topics: Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents; Arachidonic Acids; Chromatography, High Pressure Liquid; Colitis; Colon; Cytokines; Disease Models, Animal; Endocannabinoids; Enzyme-Linked Immunosorbent Assay; Ethanolamines; Gene Expression Regulation; Glycerides; Inflammation; Inflammatory Bowel Diseases; Male; Mice; Mice, Inbred C57BL; Neutrophils; Palmitic Acids; Peroxidase; Piperidines; Pyridines; Taurine

2015
N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation.
    Biochimica et biophysica acta. Molecular and cell biology of lipids, 2017, Volume: 1862, Issue:5

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Endocannabinoids; Ethanolamines; Gene Expression Regulation, Enzymologic; Humans; Inflammation; Lipopolysaccharides; Macrophage Activation; Macrophages, Alveolar; Mice; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyridines

2017
Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia.
    Neuropharmacology, 2019, 03-01, Volume: 146

    Topics: Amides; Animals; Arachidonic Acids; Cannabidiol; Disease Models, Animal; Endocannabinoids; Ethanolamines; Female; Glycerides; Hippocampus; Interpersonal Relations; Male; Methylazoxymethanol Acetate; Motor Activity; Oleic Acids; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Puberty; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Recognition, Psychology; RNA, Messenger; Schizophrenia

2019
ASP8477, a fatty acid amide hydrolase inhibitor, exerts analgesic effects in rat models of neuropathic and dysfunctional pain.
    European journal of pharmacology, 2020, Aug-15, Volume: 881

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Behavior, Animal; Brain; Chronic Pain; Disease Models, Animal; Enzyme Inhibitors; Ethanolamines; Male; Neuralgia; Oleic Acids; Pain Threshold; Palmitic Acids; Piperidines; Pyridines; Rats, Sprague-Dawley

2020