palmidrol has been researched along with pf 3845 in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Alhouayek, M; Bottemanne, P; Cani, PD; Lambert, DM; Makriyannis, A; Muccioli, GG; Subramanian, KV | 1 |
Alhouayek, M; Bottemanne, P; Makriyannis, A; Muccioli, GG | 1 |
2 other study(ies) available for palmidrol and pf 3845
Article | Year |
---|---|
N-Acylethanolamine-hydrolyzing acid amidase inhibition increases colon N-palmitoylethanolamine levels and counteracts murine colitis.
Topics: Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents; Arachidonic Acids; Chromatography, High Pressure Liquid; Colitis; Colon; Cytokines; Disease Models, Animal; Endocannabinoids; Enzyme-Linked Immunosorbent Assay; Ethanolamines; Gene Expression Regulation; Glycerides; Inflammation; Inflammatory Bowel Diseases; Male; Mice; Mice, Inbred C57BL; Neutrophils; Palmitic Acids; Peroxidase; Piperidines; Pyridines; Taurine | 2015 |
N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation.
Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Endocannabinoids; Ethanolamines; Gene Expression Regulation, Enzymologic; Humans; Inflammation; Lipopolysaccharides; Macrophage Activation; Macrophages, Alveolar; Mice; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyridines | 2017 |