paclitaxel and morin
paclitaxel has been researched along with morin in 6 studies
Research
Studies (6)
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 4 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Abdeen, S; Chapman, E; Chitre, S; Hoang, QQ; Johnson, SM; Park, Y; Ray, AM; Salim, N; Sivinski, J; Stevens, M; Washburn, A | 1 |
Choi, BC; Choi, JS; Han, HK | 1 |
Chen, S; Guo, X; Hu, B; Jiang, W; Jin, X; Li, B; Meng, H; Wang, J; Wang, W; Yu, J; Zhang, T | 1 |
Other Studies
6 other study(ies) available for paclitaxel and morin
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
Topics: Biological Products; Chaperonin 10; Chaperonin 60; Escherichia coli; Humans; Inhibitory Concentration 50; Protein Folding; Rafoxanide; Salicylanilides; Suramin | 2019 |
Altered pharmacokinetics of paclitaxel by the concomitant use of morin in rats.
Topics: Administration, Oral; Animals; Antineoplastic Agents, Phytogenic; Antioxidants; Area Under Curve; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Availability; Drug Interactions; Flavonoids; Injections, Intravenous; Male; Metabolic Clearance Rate; Paclitaxel; Rats; Rats, Sprague-Dawley | 2006 |
Morin promotes prostate cancer cells chemosensitivity to paclitaxel through miR-155/GATA3 axis.
Topics: 3' Untranslated Regions; Animals; Apoptosis; Cell Line, Tumor; Cell Survival; Cluster Analysis; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Female; Flavonoids; GATA3 Transcription Factor; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Silencing; Humans; Male; Mice; MicroRNAs; Paclitaxel; Prostatic Neoplasms; RNA Interference; Xenograft Model Antitumor Assays | 2017 |