oxymorphone and naltrindole

oxymorphone has been researched along with naltrindole* in 5 studies

Other Studies

5 other study(ies) available for oxymorphone and naltrindole

ArticleYear
14-Desoxy analogues of naltrindole and 7-spiroindanyloxymorphone: the role of the 14-hydroxy group at delta opioid receptors.
    Journal of medicinal chemistry, 1998, Jul-02, Volume: 41, Issue:14

    The 14-hydroxy group is known to increase the antagonist potency of mu-selective opioid ligands. To investigate the role of this group at the delta opioid receptor, the 14-desoxy analogues (7 and 9) of the delta-selective ligands, naltrindole (1, NTI) and spiroindanyloxymorphone (2, SIOM), have been synthesized and tested. The in vitro pharmacologic activities of 7 and 9 suggest that the 14-hydroxy group plays an important role in determining the delta selectivity and potency of NTI and SIOM.

    Topics: Animals; Guinea Pigs; Ileum; In Vitro Techniques; Male; Mice; Muscle Contraction; Muscle, Smooth; Naltrexone; Narcotic Antagonists; Oxymorphone; Receptors, Opioid, delta; Spiro Compounds; Vas Deferens

1998
Synthesis of 7-arylmorphinans. Probing the "address" requirements for selectivity at opioid delta receptors.
    Journal of medicinal chemistry, 1998, Jul-30, Volume: 41, Issue:16

    Through arylation of 6-keto opiates with diaryliodonium iodide, a series of 7-aryl opiates (3-8) have been prepared in an effort to investigate the effect of conformational mobility of the delta "address" moiety on opioid agonist and antagonist potencies. Evaluation of the ligands in the mouse vas deferens and guinea pig ileum preparations revealed that they were less potent and less selective than the conformationally constrained ligands, naltrindole (1, NTI) and 7-(spiroindanyl)oxymorphone (2, SIOM), at delta opioid receptors. It is concluded that the coplanarity of the address moiety with the C ring of the morphinan structure enhances delta antagonist potency and selectivity.

    Topics: Animals; Electric Stimulation; Guinea Pigs; Ileum; In Vitro Techniques; Ligands; Male; Mice; Models, Molecular; Molecular Conformation; Morphinans; Muscle, Smooth; Naltrexone; Narcotic Antagonists; Oxymorphone; Pain Measurement; Receptors, Opioid, delta; Spiro Compounds; Vas Deferens

1998
Affinity profiles of novel delta-receptor selective benzofuran derivatives of non-peptide opioids.
    Neurochemical research, 1998, Volume: 23, Issue:9

    Highly selective heterocyclic opioid ligands with potent delta-antagonist activity have been developed on the basis of the "message-address" concept. Using this strategy, benzofuran derivatives corresponding to the non-selective opioid antagonist, naloxone, and to the mu-opioid receptor selective agonists, oxymorphone and oxycodone, were synthesized. In vitro opioid receptor binding profiles and agonist/antagonist character of these compounds were determined in rat brain membrane preparations with highly selective radioligands. All three benzofuran derivatives displayed high affinities for the delta-opioid receptor, much less potency toward the mu-binding site, and were the least effective at the kappa-site. The results indicated that the addition of the bezofuran moiety to these fused ring opioids confers delta-receptor selectivity. The Na+ indices suggested a partial agonist character for oxymorphone- and oxycodone-benzofuran, and an antagonist character for naloxone-benzofuran. These compounds were capable of irreversible inhibition of opioid binding sites in a dose-dependent.

    Topics: Animals; Benzeneacetamides; Benzofurans; Binding, Competitive; Brain; Cell Membrane; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Naloxone; Naltrexone; Oligopeptides; Oxycodone; Oxymorphone; Pyrrolidines; Radioligand Assay; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu; Tritium

1998
Comparison of cyclic delta-opioid peptides with non-peptide delta-agonist spiroindanyloxymorphone (SIOM) using the message-address concept: a molecular modeling study.
    Journal of computer-aided molecular design, 1996, Volume: 10, Issue:4

    Based upon the message-address concept, this molecular modeling study used the delta-selective agonist spiroindanyloxymorphone (SIOM) as a molecular template for a conformational search and analysis of delta-selective opioid peptides. It was assumed that the tyramine moiety plays the same role for delta-opioid receptor recognition in both peptide and non-peptide ligands. Using 20 reported low-energy conformations of Tyr-cyclo[D-Cys-D-Pen]-OH (JOM-13) for comparison, the geometrical relationship of the two aromatic rings present in SIOM was used for the identification of potential active conformations of JOM-13, from which two delta-receptor-binding models (I and II) were constructed. Models I and II differ from each other in the arrangement of the peptide backbones. To evaluate the two models, a conformational search of two other known delta-selective ligands, [D-Pen2,D-Pen5]enkephalin (DPDPE) and [D-Pen2,L-Pen5]enkephalin (DPLPE) was performed, using the geometrical relationship of the two aromatic rings defined in the two receptor-binding models as a molecular template. Among the conformations generated from the molecular simulation, low-energy conformers of DPDPE and DPLPE conforming to models I and II were identified. Unlike model I, conformers of DPDPE and DPLPE that fit model II contain a cis amide bond in the Gly3 residue.

    Topics: Drug Design; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Ligands; Magnetic Resonance Spectroscopy; Models, Molecular; Naltrexone; Narcotic Antagonists; Oxymorphone; Peptides, Cyclic; Protein Binding; Protein Conformation; Receptors, Opioid, delta; Spiro Compounds; Structure-Activity Relationship

1996
O3-(2-carbomethoxyallyl) ethers of opioid ligands derived from oxymorphone, naltrexone, etorphine, diprenorphine, norbinaltorphimine, and naltrindole. Unexpected O3-dealkylation in the opioid radioligand displacement assay.
    Journal of medicinal chemistry, 1992, Nov-27, Volume: 35, Issue:24

    O3-(2-Carbomethoxyallyl) ether derivatives of some phenolic 4,5-epoxymorphinan opioid ligands have been prepared in a simple one-step procedure, and their behavior in the radioligand receptor assay was compared to their phenolic precursors. These O3-ether ligands appeared to show significant affinity for opioid receptors, about 2-fold less than the parent phenols, and their receptor selectivities were similar. However, on close examination of the stability of a representative ether 2b in the radioligand displacement assay, considerable O3-dealkylation was observed. The dealkylation process occurred even after denaturation of the proteins of the membrane preparation, and it occurred in the presence of model nucleophiles imidazole and thiophenol. Thus, what apparently was unusual activity is explained by O3-dealkylation to the parent phenol (e.g., 2a). Saturated ether analog 2c was not dealkylated under the conditions of the radioligand displacement assay and was a very weak opioid ligand. We conclude that the conversion of the O3(2-carbomethoxyallyl) ether electrophilic ligands to their parent phenols accounts for their activity in the opioid radioligand displacement assay.

    Topics: Alkylation; Animals; Brain; Diprenorphine; Drug Stability; Ethers; Etorphine; Guinea Pigs; Indoles; Methacrylates; Molecular Structure; Morphinans; Naltrexone; Narcotic Antagonists; Narcotics; Oxymorphone; Phenols; Radioligand Assay; Receptors, Opioid; Tritium

1992