oxyhyponitrite and myxothiazol

oxyhyponitrite has been researched along with myxothiazol* in 1 studies

Other Studies

1 other study(ies) available for oxyhyponitrite and myxothiazol

ArticleYear
Formation of nitric oxide from nitroxyl anion: role of quinones and ferricytochrome c.
    British journal of pharmacology, 2001, Volume: 132, Issue:1

    1. Our previous finding that copper ions oxidize nitroxyl anion released from Angeli's salt to nitric oxide prompted us to examine if copper-containing enzymes shared this property. 2. The copper-containing enzyme, tyrosinase, which catalyses the hydroxylation of monophenols to diphenols and the subsequent oxidation of these to the respective unstable quinone, failed to generate nitric oxide from Angeli's salt by itself, but did so in the presence of tyrosine. 3. L-DOPA, the initial product of the reaction of tyrosinase with tyrosine, was not the active species, since it failed to generate nitric oxide from Angeli's salt. Nevertheless, L-DOPA and two other substrates, namely, catechol and tyramine did produce nitric oxide from Angeli's salt in the presence of tyrosinase, suggesting involvement of the respective unstable quinones. In support, we found that 1,4-benzoquinone produced a powerful nitric oxide signal from Angeli's salt. 4. Coenzyme Q(o), an analogue of ubiquinone, failed to generate nitric oxide from Angeli's salt by itself, but produced a powerful signal in the presence of its mitochondrial complex III cofactor, ferricytochrome c. 5. Experiments conducted on rat aortic rings with the mitochondrial complex III inhibitor, myxothiazol, to determine if this pathway was responsible for the vascular conversion of nitroxyl to nitric oxide were equivocal: relaxation to Angeli's salt was inhibited but so too was that to unrelated relaxants. 6. Thus, certain quinones oxidize nitroxyl to nitric oxide. Further work is required to determine if endogenous quinones contribute to the relaxant actions of nitroxyl donors such as Angeli's salt.

    Topics: Animals; Aorta, Thoracic; Cytochrome c Group; Electron Transport Complex III; In Vitro Techniques; Male; Methacrylates; Monophenol Monooxygenase; Muscle Relaxation; Muscle, Smooth, Vascular; Nitric Oxide; Nitrites; Nitrogen Oxides; Oxidation-Reduction; Quinones; Rats; Rats, Wistar; Thiazoles; Tyrosine; Ubiquinone; Vasodilation; Vasodilator Agents

2001