oxyhyponitrite has been researched along with linsidomine* in 2 studies
2 other study(ies) available for oxyhyponitrite and linsidomine
Article | Year |
---|---|
Formation of peroxynitrite from reaction of nitroxyl anion with molecular oxygen.
Peroxynitrite (ONOO(-)/ONOOH) is generally expected to be formed in vivo from the diffusion-controlled reaction between superoxide (O(2)) and nitric oxide ((*)NO). In the present paper we show that under aerobic conditions the nitroxyl anion (NO(-)), released from Angeli's salt (disodium diazen-1-ium-1,2,2-triolate, (-)ON=NO(2)(-)), generated peroxynitrite with a yield of about 65%. Simultaneously, hydroxyl radicals are formed from the nitroxyl anion with a yield of about 3% via a minor, peroxynitrite-independent pathway. Further experiments clearly underline that the chemistry of NO(-) in the presence of oxygen is mainly characterized by peroxynitrite and not by HO( small middle dot) radicals. Quantum-chemical calculations predict that peroxynitrite formation should proceed via intermediary formation of (*)NO and O(2), probably by an electron-transfer mechanism. This prediction is supported by the fact that H(2)O(2) is formed during the decay of NO(-) in the presence of superoxide dismutase (Cu(II),Zn-SOD). Since the nitroxyl anion may be released endogenously by a variety of biomolecules, substantial amounts of peroxynitrite might be formed in vivo via NO(-) in addition to the "classical" ( small middle dot)NO + O(2)() pathway. Topics: Animals; Anions; Antioxidants; Cattle; Dose-Response Relationship, Drug; Hydrogen Peroxide; Hydrogen-Ion Concentration; Models, Chemical; Molsidomine; NAD; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitrites; Nitrogen Oxides; Oxygen; Peroxynitrous Acid; Rhodamines; Superoxide Dismutase | 2002 |
Analysis of 3-nitrotyrosine in biological fluids and protein hydrolyzates by high-performance liquid chromatography using a postseparation, on-line reduction column and electrochemical detection: results with various nitrating agents.
Nitric oxide reacts rapidly with superoxide to form the strong nitrating agent peroxynitrite, which is responsible for much of the tissue damage associated with diverse pathophysiological conditions such as inflammation. The occurrence of free or protein-bound nitrotyrosine (NTYR) has been considered as evidence for in vivo formation of peroxynitrite. However, various agents can nitrate tyrosine, and their relative significance in vivo has not been determined due to lack of a sensitive method to analyze NTYR in tissue proteins and biological fluids. We have developed a new HPLC-electrochemical detection method to analyze NTYR in protein hydrolyzates or biological fluids. The sample is injected directly into a reversed-phase HPLC column and NTYR is subsequently reduced by a platinum column to 3-aminotyrosine, which is quantified with an electrochemical detector. The method is simple, selective, and sensitive (detection limit, 0.1 pmol per 20-microl injection). We have applied this method to compare in vitro the ability of various nitrating agents to form NTYR in bovine serum albumin and human plasma. Yields of NTYR formed in human plasma proteins incubated with 1 or 10 mM nitrating agent decreased in the following order: synthetic peroxynitrite > 3-morpholinosydonimine, a generator of both NO and superoxide > Angeli's salt, which forms nitroxyl anion (NO-) > spermine-NONOate, which releases NO > sodium nitrite plus hypochlorite, which forms the nitrating agent nitryl chloride (NO2Cl). A simple purification method using a C18 Sep-Pak cartridge is also described for analysis of free NTYR in human plasma. Topics: Chromatography, High Pressure Liquid; Electrochemistry; Humans; Hypochlorous Acid; Indicators and Reagents; Molsidomine; Nitrates; Nitrites; Nitrogen Oxides; Serum Albumin, Bovine; Sodium Nitrite; Spectrophotometry, Ultraviolet; Spermine; Tyrosine | 1999 |