oxyhyponitrite and 1-1-diethyl-2-hydroxy-2-nitrosohydrazine

oxyhyponitrite has been researched along with 1-1-diethyl-2-hydroxy-2-nitrosohydrazine* in 4 studies

Other Studies

4 other study(ies) available for oxyhyponitrite and 1-1-diethyl-2-hydroxy-2-nitrosohydrazine

ArticleYear
Nitroxyl anion donor, Angeli's salt, does not develop tolerance in rat isolated aortae.
    Hypertension (Dallas, Tex. : 1979), 2007, Volume: 49, Issue:4

    The nitroxyl anion (HNO) is emerging as a novel regulator of cardiovascular function with therapeutic potential in the treatment of diseases such as heart failure. It remains unknown whether tolerance develops to HNO donors, a limitation of currently used nitrovasodilators. The susceptibility of the HNO donor, Angeli's salt (AS), to the development of vascular tolerance was compared with the NO donors, glyceryl trinitrate (GTN) and diethylamine/NONOate (DEA/NO) in rat isolated aortae. Vasorelaxation to AS was attenuated (P<0.01) by the HNO scavenger l-cysteine, whereas the sensitivity to GTN and DEA/NO was decreased (P<0.01) by the NO. scavenger carboxy-[2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidozoline-1-oxy-3-oxide]. The soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one impaired responses to GTN>or=AS>>DEA/NO. Pretreatment with 10, 30, and 100 micromol/L of GTN for 60 minutes induced a 4- (P<0.05), 13- (P<0.01), and 48-fold (P<0.01) decrease in sensitivity to GTN, demonstrating tolerance development. In contrast, pretreatment with AS or DEA/NO (10, 30, and 100 micromol/L) did not alter their subsequent vasorelaxation. All of the nitrovasodilators (30 micromol/L) displayed a similar time course of vasorelaxation and cGMP accumulation over a 60-minute period. Unlike vasorelaxation, the magnitude of peak cGMP accumulation differed substantially: DEA/NO>>AS>GTN. GTN did not induce cross-tolerance to either AS or DEA/NO. In contrast, pre-exposure to DEA/NO, but not AS, caused a concentration-dependent attenuation (P<0.01) of GTN-mediated relaxation, which was negated by the protein kinase G inhibitor guanosine 3',5'-cyclic monophosphorothioate, 8-(4-chlorophenylthio)-,Rp-isomer, triethylammonium salt. In conclusion, vascular tolerance does not develop to HNO, nor does cross-tolerance between HNO and GTN occur. Thus, HNO donors may have therapeutic advantages over traditional nitrovasodilators.

    Topics: Animals; Aorta, Thoracic; Benzoates; Cyclic GMP-Dependent Protein Kinases; Cysteine; Drug Tolerance; Enzyme Inhibitors; Free Radical Scavengers; Hydrazines; Imidazoles; In Vitro Techniques; Male; Nitric Oxide; Nitric Oxide Donors; Nitrites; Nitrogen Oxides; Nitroglycerin; Oxadiazoles; Quinoxalines; Rats; Rats, Inbred WKY; Time Factors; Vasodilation

2007
Nitroxyl increases force development in rat cardiac muscle.
    The Journal of physiology, 2007, May-01, Volume: 580, Issue:Pt.3

    Donors of nitroxyl (HNO), the reduced congener of nitric oxide (NO), exert positive cardiac inotropy/lusitropy in vivo and in vitro, due in part to their enhancement of Ca(2+) cycling into and out of the sarcoplasmic reticulum. Here we tested whether the cardiac action of HNO further involves changes in myofilament-calcium interaction. Intact rat trabeculae from the right ventricle were mounted between a force transducer and a motor arm, superfused with Krebs-Henseleit (K-H) solution (pH 7.4, room temperature) and loaded iontophoretically with fura-2 to determine [Ca(2+)](i). Sarcomere length was set at 2.2-2.3 microm. HNO donated by Angeli's salt (AS; Na(2)N(2)O(3)) dose-dependently increased both twitch force and [Ca(2+)](i) transients (from 50 to 1000 microm). Force increased more than [Ca(2+)](i) transients, especially at higher doses (332 +/- 33% versus 221 +/- 27%, P < 0.01 at 1000 microm). AS/HNO (250 microm) increased developed force without changing Ca(2+) transients at any given [Ca(2+)](o) (0.5-2.0 mm). During steady-state activation, AS/HNO (250 microm) increased maximal Ca(2+)-activated force (F(max), 106.8 +/- 4.3 versus 86.7 +/- 4.2 mN mm(-2), n = 7-8, P < 0.01) without affecting Ca(2+) required for 50% activation (Ca(50), 0.44 +/- 0.04 versus 0.52 +/- 0.04 microm, not significant) or the Hill coefficient (4.75 +/- 0.67 versus 5.02 +/- 1.1, not significant). AS/HNO did not alter myofibrillar Mg-ATPase activity, supporting an effect on the myofilaments themselves. The thiol reducing agent dithiothreitol (DTT, 5.0 mm) both prevented and reversed HNO action, confirming AS/HNO redox sensitivity. Lastly, NO (from DEA/NO) did not mimic AS/HNO cardiac effects. Thus, in addition to reported changes in Ca(2+) cycling, HNO also acts as a cardiac Ca(2+) sensitizer, augmenting maximal force without altering actomyosin ATPase activity. This is likely to be due to modulation of myofilament proteins that harbour reactive thiolate groups that are targets of HNO.

    Topics: Animals; Ca(2+) Mg(2+)-ATPase; Calcium; Heart; Hydrazines; In Vitro Techniques; Intracellular Membranes; Myocardial Contraction; Myocardium; Myofibrils; Nitric Oxide Donors; Nitrites; Nitrogen Oxides; Osmolar Concentration; Rats; Rats, Sprague-Dawley

2007
A mosquito 2-Cys peroxiredoxin protects against nitrosative and oxidative stresses associated with malaria parasite infection.
    Free radical biology & medicine, 2006, Mar-15, Volume: 40, Issue:6

    Malaria parasite infection in anopheline mosquitoes induces nitrosative and oxidative stresses that limit parasite development, but also damage mosquito tissues in proximity to the response. Based on these observations, we proposed that cellular defenses in the mosquito may be induced to minimize self-damage. Specifically, we hypothesized that peroxiredoxins (Prxs), enzymes known to detoxify reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), protect mosquito cells. We identified an Anopheles stephensi 2-Cys Prx ortholog of Drosophila melanogaster Prx-4783, which protects fly cells against oxidative stresses. To assess function, AsPrx-4783 was overexpressed in D. melanogaster S2 and in A. stephensi (MSQ43) cells and silenced in MSQ43 cells with RNA interference before treatment with various ROS and RNOS. Our data revealed that AsPrx-4783 and DmPrx-4783 differ in host cell protection and that AsPrx-4783 protects A. stephensi cells against stresses that are relevant to malaria parasite infection in vivo, namely nitric oxide (NO), hydrogen peroxide, nitroxyl, and peroxynitrite. Further, AsPrx-4783 expression is induced in the mosquito midgut by parasite infection at times associated with peak nitrosative and oxidative stresses. Hence, whereas the NO-mediated defense response is toxic to both host and parasite, AsPrx-4783 may shift the balance in favor of the mosquito.

    Topics: Amino Acid Sequence; Animals; Anopheles; Cells, Cultured; Drosophila melanogaster; Hydrazines; Hydrogen Peroxide; Insect Proteins; Malaria; Molecular Sequence Data; Nitrites; Nitrogen Oxides; Oxidative Stress; Peroxidases; Peroxiredoxins; Peroxynitrous Acid; Plasmodium berghei; Reactive Nitrogen Species; RNA Interference; Sequence Alignment; Transfection

2006
Comparison of the NO and HNO donating properties of diazeniumdiolates: primary amine adducts release HNO in Vivo.
    Journal of medicinal chemistry, 2005, Dec-29, Volume: 48, Issue:26

    Diazeniumdiolates, more commonly referred to as NONOates, have been extremely useful in the investigation of the biological effects of nitric oxide (NO) and related nitrogen oxides. The NONOate Angeli's salt (Na(2)N(2)O(3)) releases nitroxyl (HNO) under physiological conditions and exhibits unique cardiovascular features (i.e., positive inotropy/lusitropy) that may have relevance for pharmacological treatment of heart failure. In the search for new, organic-based compounds that release HNO, we examined isopropylamine NONOate (IPA/NO; Na[(CH(3))(2)CHNH(N(O)NO]), which is an adduct of NO and a primary amine. The chemical and pharmacological properties of IPA/NO were compared to those of Angeli's salt and a NO-producing NONOate, DEA/NO (Na[Et(2)NN(O)NO]), which is a secondary amine adduct. Under physiological conditions IPA/NO exhibited all the markers of HNO production (e.g., reductive nitrosylation, thiol reactivity, positive inotropy). These data suggest that primary amine NONOates may be useful as HNO donors in complement to the existing series of secondary amine NONOates, which are well-characterized NO donors.

    Topics: Animals; Azo Compounds; Calcitonin Gene-Related Peptide; Cardiovascular System; Cell Survival; Cells, Cultured; Cricetinae; Cricetulus; Cyclic GMP; Dogs; Glutathione; Hemodynamics; Hydrazines; Lethal Dose 50; Male; Nitric Oxide Donors; Nitrites; Nitrogen Oxides; Uric Acid

2005