oxprenolol and phenobarbital

oxprenolol has been researched along with phenobarbital in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's6 (85.71)29.6817
2010's1 (14.29)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Topliss, JG; Yoshida, F1
Caron, G; Ermondi, G1
Abraham, MH; Acree, WE; Ibrahim, A1
Baert, B; Beetens, J; Bodé, S; De Spiegeleer, B; Deconinck, E; Lambert, J; Slegers, G; Slodicka, M; Stoppie, P; Van Gele, M; Vander Heyden, Y1
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1

Other Studies

7 other study(ies) available for oxprenolol and phenobarbital

ArticleYear
QSAR model for drug human oral bioavailability.
    Journal of medicinal chemistry, 2000, Jun-29, Volume: 43, Issue:13

    Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its derived parameters deltalog P(N)(oct-alk) and log D(pH)(alk).
    Journal of medicinal chemistry, 2005, May-05, Volume: 48, Issue:9

    Topics: 1-Octanol; Alkanes; Hydrogen-Ion Concentration; Least-Squares Analysis; Mathematics; Models, Chemical; Models, Molecular; Solvents; Water

2005
Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs.
    European journal of medicinal chemistry, 2008, Volume: 43, Issue:3

    Topics: Air; Animals; Humans; Lung; Organic Chemicals; Probability; Rats; Tissue Distribution; Volatilization

2008
Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds.
    Bioorganic & medicinal chemistry, 2007, Nov-15, Volume: 15, Issue:22

    Topics: Anti-Inflammatory Agents; Cell Membrane Permeability; Cluster Analysis; Drug Evaluation, Preclinical; Humans; Models, Biological; Predictive Value of Tests; Quantitative Structure-Activity Relationship; Regression Analysis; Skin; Skin Absorption

2007
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010