oxidopamine and am 404
oxidopamine has been researched along with am 404 in 3 studies
Research
Studies (3)
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors
Authors | Studies |
---|---|
Bari, M; Battista, N; Bernardi, G; Calabresi, P; Centonze, D; Finazzi-Agrò, A; Gubellini, P; Maccarrone, M; Picconi, B | 1 |
Caraballo, I; El Banoua, F; Fernandez-Espejo, E; Ferrer, B; Flores, JA; Galan-Rodriguez, B; Rodriguez de Fonseca, F | 1 |
de Lago, E; Fernández-Ruiz, J; García-Arencibia, M; González, S; Mechoulam, R; Ramos, JA | 1 |
Other Studies
3 other study(ies) available for oxidopamine and am 404
Article | Year |
---|---|
Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission.
Topics: Amidohydrolases; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Carrier Proteins; Corpus Striatum; Disease Models, Animal; Dronabinol; Endocannabinoids; Enzyme Inhibitors; Glutamic Acid; Glycerides; Hydrolysis; In Vitro Techniques; Membrane Potentials; Neurons; Oxidopamine; Parkinsonian Disorders; Patch-Clamp Techniques; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Drug; Synaptic Transmission | 2002 |
Experimental parkinsonism alters anandamide precursor synthesis, and functional deficits are improved by AM404: a modulator of endocannabinoid function.
Topics: Acyltransferases; Amidohydrolases; Amphetamine; Analysis of Variance; Animals; Antiparkinson Agents; Arachidonic Acids; Behavior, Animal; Brain Chemistry; Cell Count; Central Nervous System Stimulants; Dopamine Agonists; Dopamine Antagonists; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Interactions; Endocannabinoids; Functional Laterality; Male; Motor Activity; Oxidopamine; Parkinsonian Disorders; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Rotation; Serotonin Antagonists; Serotonin Receptor Agonists; Substantia Nigra; Tyrosine 3-Monooxygenase | 2004 |
Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties.
Topics: Animals; Antioxidants; Arachidonic Acids; Benzoxazines; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cannabinoids; Disease Models, Animal; Dopamine; Furans; Male; Morpholines; Naphthalenes; Nerve Degeneration; Neuroprotective Agents; Organ Culture Techniques; Oxidative Stress; Oxidopamine; Parkinsonian Disorders; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Superoxide Dismutase; Sympatholytics | 2007 |