oxazolidin-2-one has been researched along with florfenicol in 13 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (15.38) | 29.6817 |
2010's | 7 (53.85) | 24.3611 |
2020's | 4 (30.77) | 2.80 |
Authors | Studies |
---|---|
Kehrenberg, C; Long, KS; Poehlsgaard, J; Schwarz, S; Vester, B | 1 |
Arias, CA; Castañeda, E; Moreno, J; Murray, BE; Panesso, D; Quinn, JP; Reyes, J; Vallejo, M; Villegas, MV | 1 |
Bauer, J; Harms, KS; Hölzel, CS; Schwaiger, K | 1 |
Schwarz, S; Shen, JZ; Shen, Z; Wang, Y; Wu, CM; Zhang, Q; Zhang, W | 1 |
Chen, L; Liu, Y; Schwarz, S; Shen, J; Wang, S; Wang, Y; Wu, C | 1 |
Deane, J; Goering, RV; Jenkins, SG; Locke, JB; Sahm, DF; Scharn, CR; Shaw, KJ; Zuill, DE | 1 |
Cai, J; Fan, R; Feßler, AT; Li, D; Li, J; Schwarz, S; Shen, J; Wang, Y; Wu, C; Zhang, R | 1 |
Jang, GC; Jung, SC; Kang, HY; Kim, SR; Lee, HS; Lee, K; Lim, SK; Moon, DC; Nam, HM; Tamang, MD | 1 |
Choi, MJ; Hyun, BH; Jung, DY; Kang, HY; Lim, SK; Moon, DC; Na, SH; Oh, SJ | 1 |
Chen, Y; Du, J; Fu, Y; Hu, X; Li, X; Shen, J; Wang, C; Wang, Y; Xia, X; Ye, D; Zhou, L | 1 |
Feßler, AT; Li, X; Liu, D; Liu, X; Schwarz, S; Shen, J; Shen, Z; Wang, Y; Yang, D | 1 |
Biggel, M; Haussmann, A; Nüesch-Inderbinen, M; Stephan, R; Treier, A; Zurfluh, K | 1 |
Han, Z; Li, J; Liu, S; Qiao, W; Tian, T; Yang, M; Yang, X; Zhang, Y | 1 |
13 other study(ies) available for oxazolidin-2-one and florfenicol
Article | Year |
---|---|
The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics.
Topics: Anti-Bacterial Agents; Chloramphenicol; Diterpenes; Drug Resistance, Multiple, Bacterial; Escherichia coli; Escherichia coli Proteins; Humans; Lincosamides; Macrolides; Methyltransferases; Microbial Sensitivity Tests; Oxazolidinones; Peptidyl Transferases; Pleuromutilins; Polycyclic Compounds; Ribosomes; Staphylococcus aureus; Streptogramin A; Thiamphenicol | 2006 |
Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase.
Topics: Acetamides; Anti-Bacterial Agents; Bacterial Proteins; Chloramphenicol; Colombia; Contact Tracing; Cross Infection; Drug Resistance, Bacterial; Family Characteristics; Fatal Outcome; Female; Humans; Linezolid; Methicillin Resistance; Methyltransferases; Microbial Sensitivity Tests; Middle Aged; Oxazolidinones; RNA, Ribosomal, 23S; Staphylococcal Infections; Staphylococcus aureus; Thiamphenicol | 2008 |
Resistance to linezolid in a porcine Clostridium perfringens strain carrying a mutation in the rplD gene encoding the ribosomal protein L4.
Topics: Acetamides; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Clostridium perfringens; Drug Resistance, Bacterial; Erythromycin; Humans; Linezolid; Manure; Microbial Sensitivity Tests; Mutation; Oxazolidinones; Ribosomal Proteins; Swine; Thiamphenicol | 2010 |
Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin.
Topics: Acetamides; Animals; Anti-Bacterial Agents; Bacterial Proteins; Base Sequence; DNA Transposable Elements; DNA, Ribosomal; Drug Resistance, Multiple, Bacterial; Fimbriae Proteins; Food Microbiology; Food Safety; Linezolid; Microbial Sensitivity Tests; Oxazolidinones; Proteus vulgaris; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Staphylococcus; Sus scrofa; Thiamphenicol | 2011 |
Investigation of a multiresistance gene cfr that fails to mediate resistance to phenicols and oxazolidinones in Enterococcus faecalis.
Topics: Animals; Anti-Bacterial Agents; Bacterial Proteins; Blotting, Southern; Cattle; Chloramphenicol; Conjugation, Genetic; DNA, Bacterial; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Enterococcus faecalis; Gene Expression Profiling; Microbial Sensitivity Tests; Molecular Sequence Data; Oxazolidinones; Plasmids; Reverse Transcriptase Polymerase Chain Reaction; RNA, Ribosomal, 23S; Sequence Analysis, DNA; Thiamphenicol; Transcription, Genetic | 2014 |
Identification and characterization of linezolid-resistant cfr-positive Staphylococcus aureus USA300 isolates from a New York City medical center.
Topics: Acetamides; Anti-Bacterial Agents; Bacterial Proteins; Clindamycin; Diterpenes; Drug Resistance, Multiple, Bacterial; Gene Transfer Techniques; Humans; Linezolid; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Molecular Sequence Data; New York; Organophosphates; Oxazoles; Oxazolidinones; Plasmids; Staphylococcal Infections; Thiamphenicol | 2014 |
Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri.
Topics: Animals; Anti-Infective Agents; Cloning, Molecular; Conjugation, Genetic; Drug Resistance, Multiple, Bacterial; Gene Expression; Genes, Bacterial; Microbial Sensitivity Tests; Oxazolidinones; Plasmids; Sequence Analysis, DNA; Sequence Homology; Staphylococcus; Swine; Thiamphenicol; Transformation, Bacterial | 2016 |
Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses.
Topics: Animals; Anti-Bacterial Agents; Bacterial Typing Techniques; Cattle; Chickens; Chloramphenicol; Drug Resistance, Bacterial; Electrophoresis, Gel, Pulsed-Field; Enterococcus; Enterococcus faecalis; Feces; Food Microbiology; Gram-Positive Bacterial Infections; Linezolid; Multilocus Sequence Typing; Mutation; Oxazolidinones; Republic of Korea; Swine; Thiamphenicol | 2017 |
Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses.
Topics: Animals; Anti-Bacterial Agents; Anti-Infective Agents; Bacterial Proteins; Chloramphenicol; Ciprofloxacin; Drug Resistance, Multiple, Bacterial; Ducks; Enterococcus faecalis; Enterococcus faecium; Erythromycin; Feces; Genes, Bacterial; Linezolid; Microbial Sensitivity Tests; Multilocus Sequence Typing; Oxazolidinones; Republic of Korea; Ribosomal Protein L3; RNA, Ribosomal, 23S; Tetracycline; Thiamphenicol | 2019 |
Association of florfenicol residues with the abundance of oxazolidinone resistance genes in livestock manures.
Topics: Animals; Anti-Bacterial Agents; Cattle; China; Genes, Bacterial; Livestock; Manure; Oxazolidinones; Swine; Thiamphenicol | 2020 |
Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli.
Topics: Animals; Anti-Bacterial Agents; Campylobacter coli; Chickens; China; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Ducks; Enterococcus; Genes, Bacterial; Genomic Islands; Linezolid; Microbial Sensitivity Tests; Oxazolidinones; Plasmids; Thiamphenicol | 2020 |
Fattening Pigs Are a Reservoir of Florfenicol-Resistant Enterococci Harboring Oxazolidinone Resistance Genes.
Topics: Animals; Anti-Bacterial Agents; Cross-Sectional Studies; Drug Resistance, Bacterial; Enterococcus; Enterococcus faecalis; Enterococcus faecium; Gram-Positive Bacterial Infections; Microbial Sensitivity Tests; Oxazolidinones; Swine; Thiamphenicol | 2022 |
Hyper-thermophilic anaerobic pretreatment enhances the removal of transferable oxazolidinone and phenicol cross-resistance gene optrA in enterococci.
Topics: Anaerobiosis; Animals; Anti-Bacterial Agents; Drug Resistance, Bacterial; Enterococcus; Enterococcus faecalis; Genes, Bacterial; Linezolid; Oxazolidinones | 2023 |