oxazolidin-2-one has been researched along with chloramphenicol in 32 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (3.13) | 18.7374 |
1990's | 1 (3.13) | 18.2507 |
2000's | 10 (31.25) | 29.6817 |
2010's | 16 (50.00) | 24.3611 |
2020's | 4 (12.50) | 2.80 |
Authors | Studies |
---|---|
Eustice, DC; Feldman, PA; Slee, AM | 1 |
Lin, AH; Marotti, KR; Murray, RW; Vidmar, TJ | 1 |
Dahlberg, AE; Mills, JA; O'Connor, M; Thompson, J | 1 |
Bobkova, EV; Jordan, DB; Kurilla, MG; Pompliano, DL; Yan, YP | 1 |
Hyun, S; Jeong, S; Kwon, M; Lee, J; Lee, KH; Shin, KJ; Yu, J | 1 |
Athamna, A; Athamna, M; Bast, DJ; Medlej, B; Rubinstein, E | 1 |
Farrell, DJ; Jorgensen, JH; Klugman, KP; Moore, M; Schaffner, W; Smith, AM; Whitney, CG; Wolter, N | 1 |
Cole-Sinclair, M; Davis, A; Dawson, MA; Elliott, P | 1 |
Kehrenberg, C; Long, KS; Poehlsgaard, J; Schwarz, S; Vester, B | 1 |
Clark, NC; Donlan, RM; Dumas, N; Jensen, B; Kohlerschmidt, D; Limberger, RJ; McDougal, LK; Musser, KA; Patel, JB; Shin, DH; Thompson, J; Weigel, LM; Zhu, W | 1 |
Duewelhenke, N; Eysel, P; Krut, O | 1 |
Arias, CA; Castañeda, E; Moreno, J; Murray, BE; Panesso, D; Quinn, JP; Reyes, J; Vallejo, M; Villegas, MV | 1 |
Bohnhorst, B; Hansen, G; Hartmann, C; Hermann, E; Peter, C; Sedlacek, L; Ure, B | 1 |
Barnhill, AE; Brewer, MT; Carlson, SA | 1 |
Lambert, T | 1 |
Ono, Y | 1 |
Bierbaum, G; Josten, M; Sahl, HG; Schreiber, F; Szekat, C | 1 |
Chen, L; Liu, Y; Schwarz, S; Shen, J; Wang, S; Wang, Y; Wu, C | 1 |
Cai, J; Cui, L; Deng, X; Feßler, AT; He, T; Hu, Z; Li, J; Li, Y; Lv, Y; Schwarz, S; Shen, J; Shen, Y; Wang, D; Wang, Y; Wang, Z; Wu, C; Xia, X; Yu, H; Zhang, R; Zhao, Q | 1 |
Campbell, K; Elliott, CT; McNamee, SE; Persic, L; Rosar, G | 1 |
Jang, GC; Jung, SC; Kang, HY; Kim, SR; Lee, HS; Lee, K; Lim, SK; Moon, DC; Nam, HM; Tamang, MD | 1 |
Dennison, DD; McNeil, MB; Parish, T; Shelton, CD | 1 |
Abbassi, MS; Coque, TM; Elghaieb, H; Freitas, AR; Hassen, A; León-Sampedro, R; Novais, C; Peixe, L | 1 |
Antonelli, A; Brenciani, A; D'Andrea, MM; Galeotti, CL; Morroni, G; Pollini, S; Rossolini, GM; Varaldo, PE | 1 |
Bender, JK; Fleige, C; Klare, I; Lange, D; Werner, G | 1 |
Choi, MJ; Hyun, BH; Jung, DY; Kang, HY; Lim, SK; Moon, DC; Na, SH; Oh, SJ | 1 |
Chen, YP; Kang, ZZ; Kong, LH; Lei, CW; Wang, HN; Wu, SK | 1 |
Du, XD; Hao, W; Li, D; Li, XS; Liu, B; Schwarz, S; Shan, X; Shang, Y; Zhang, SM | 1 |
Feßler, AT; Li, X; Liu, D; Liu, X; Schwarz, S; Shen, J; Shen, Z; Wang, Y; Yang, D | 1 |
Makarov, GI; Reshetnikova, RV | 1 |
Cha, MH; Gwak, YS; Kim, E; Kim, HY; Kwak, HS; Shin, SW; Woo, GJ; Yang, SM | 1 |
Crowe-McAuliffe, C; Wilson, DN | 1 |
2 review(s) available for oxazolidin-2-one and chloramphenicol
Article | Year |
---|---|
Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components.
Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; Chloramphenicol; DNA Topoisomerases, Type I; Fluoroquinolones; Humans; Linezolid; Mitochondria; Oxazolidinones; Protein Biosynthesis; Ribosomes | 2012 |
Antibiotics that affect the ribosome.
Topics: Aminoglycosides; Animals; Anti-Bacterial Agents; Chloramphenicol; Diterpenes; Drug Resistance, Bacterial; Fusidic Acid; Humans; Macrolides; Methyltransferases; Oxazolidinones; Pleuromutilins; Polycyclic Compounds; Protein Synthesis Inhibitors; Ribosomal Proteins; Ribosome Subunits, Large, Bacterial; Ribosomes; RNA, Ribosomal, 16S; Tetracyclines | 2012 |
30 other study(ies) available for oxazolidin-2-one and chloramphenicol
Article | Year |
---|---|
The mechanism of action of DuP 721, a new antibacterial agent: effects on macromolecular synthesis.
Topics: Anti-Bacterial Agents; Bacillus subtilis; Bacterial Proteins; Chloramphenicol; DNA, Bacterial; Drug Resistance, Microbial; Hygromycin B; Microbial Sensitivity Tests; Mutation; Oxazoles; Oxazolidinones; Peptide Chain Elongation, Translational; RNA, Bacterial; Streptomycin; Tetracycline | 1988 |
The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin.
Topics: Acetamides; Anti-Bacterial Agents; Chloramphenicol; Escherichia coli; Kinetics; Lincomycin; Oxazoles; Oxazolidinones; Puromycin; Ribosomes | 1997 |
The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo.
Topics: Acetamides; Amino Acids; Aminoglycosides; Anti-Bacterial Agents; Chloramphenicol; Codon, Terminator; Drug Resistance, Bacterial; Escherichia coli; Frameshifting, Ribosomal; Genes, Reporter; Lac Operon; Linezolid; Mutation, Missense; Oxazolidinones; Protein Biosynthesis; Protein Synthesis Inhibitors | 2002 |
Catalytic properties of mutant 23 S ribosomes resistant to oxazolidinones.
Topics: Antibiotics, Antineoplastic; Binding Sites; Catalysis; Catalytic Domain; Chloramphenicol; Dose-Response Relationship, Drug; Drug Resistance; Escherichia coli; Inhibitory Concentration 50; Kinetics; Models, Chemical; Models, Molecular; Mutagenesis, Site-Directed; Mutation; Oxazolidinones; Peptidyl Transferases; Protein Binding; Protein Synthesis Inhibitors; Puromycin; RNA, Ribosomal, 23S; RNA, Transfer, Met; Sparsomycin | 2003 |
An approach to enhance specificity against RNA targets using heteroconjugates of aminoglycosides and chloramphenicol (or linezolid).
Topics: Acetamides; Aminoglycosides; Chloramphenicol; Framycetin; Linezolid; Nucleic Acid Conformation; Oxazolidinones; RNA; Structure-Activity Relationship; Substrate Specificity | 2004 |
In vitro post-antibiotic effect of fluoroquinolones, macrolides, beta-lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin/dalfopristin and rifampicin on Bacillus anthracis.
Topics: Acetamides; Anti-Bacterial Agents; Bacillus anthracis; beta-Lactams; Chloramphenicol; Clindamycin; Fluoroquinolones; Linezolid; Macrolides; Microbial Sensitivity Tests; Oxazolidinones; Rifampin; Tetracyclines; Vancomycin; Virginiamycin | 2004 |
Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus.
Topics: Anti-Infective Agents; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Humans; Macrolides; Microbial Sensitivity Tests; Mutation; Oxazolidinones; Ribosomal Proteins; Streptococcus pneumoniae | 2005 |
Linezolid-induced dyserythropoiesis: chloramphenicol toxicity revisited.
Topics: Acetamides; Aged; Anemia, Hemolytic; Bone Marrow; Chloramphenicol; Erythropoiesis; Hemoglobins; Humans; Linezolid; Male; Middle Aged; Oxazolidinones; Protein Synthesis Inhibitors; Reticulocyte Count; Reticulocytes; Sepsis; Staphylococcal Infections | 2005 |
The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics.
Topics: Anti-Bacterial Agents; Chloramphenicol; Diterpenes; Drug Resistance, Multiple, Bacterial; Escherichia coli; Escherichia coli Proteins; Humans; Lincosamides; Macrolides; Methyltransferases; Microbial Sensitivity Tests; Oxazolidinones; Peptidyl Transferases; Pleuromutilins; Polycyclic Compounds; Ribosomes; Staphylococcus aureus; Streptogramin A; Thiamphenicol | 2006 |
High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm.
Topics: Acetamides; Aminoglycosides; Biofilms; Catheters, Indwelling; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Enterococcus faecalis; Enterococcus faecium; Female; Fluoroquinolones; Humans; Linezolid; Macrolides; Microbial Sensitivity Tests; Micrococcus; Middle Aged; Morganella morganii; Oxazolidinones; Penicillins; Pseudomonas aeruginosa; Rifampin; Staphylococcus aureus; Tetracyclines; Trimethoprim, Sulfamethoxazole Drug Combination; Urinary Catheterization; Vancomycin; Vancomycin Resistance | 2007 |
Influence on mitochondria and cytotoxicity of different antibiotics administered in high concentrations on primary human osteoblasts and cell lines.
Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; Antimycin A; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cells, Cultured; Chloramphenicol; Clindamycin; Dose-Response Relationship, Drug; Fluoroquinolones; Glycolysis; HeLa Cells; Humans; Lactic Acid; Linezolid; Macrolides; Mitochondria; Osteoblasts; Oxazolidinones; Rotenone; Tetracyclines; Time Factors | 2007 |
Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase.
Topics: Acetamides; Anti-Bacterial Agents; Bacterial Proteins; Chloramphenicol; Colombia; Contact Tracing; Cross Infection; Drug Resistance, Bacterial; Family Characteristics; Fatal Outcome; Female; Humans; Linezolid; Methicillin Resistance; Methyltransferases; Microbial Sensitivity Tests; Middle Aged; Oxazolidinones; RNA, Ribosomal, 23S; Staphylococcal Infections; Staphylococcus aureus; Thiamphenicol | 2008 |
Successful treatment of vancomycin-resistant Enterococcus faecium ventriculitis with combined intravenous and intraventricular chloramphenicol in a newborn.
Topics: Acetamides; Anti-Bacterial Agents; Cerebral Ventricles; Cerebrospinal Fluid; Chloramphenicol; Encephalitis; Enterococcus faecium; Female; Gentamicins; Gram-Positive Bacterial Infections; Head; Humans; Infant, Newborn; Infusions, Intravenous; Injections, Intraventricular; Linezolid; Lumbosacral Region; Magnetic Resonance Imaging; Oxazolidinones; Pelvis; Radiography; Treatment Outcome; Vancomycin Resistance | 2010 |
[Antibiotics].
Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; beta-Lactams; Chloramphenicol; Fosfomycin; Glycopeptides; Humans; Ketolides; Linezolid; Macrolides; Oxazolidinones; Peptides; Streptogramins; Tetracyclines; Trimethoprim, Sulfamethoxazole Drug Combination | 2012 |
Antibiotic-induced autoactivation of IS256 in Staphylococcus aureus.
Topics: Acetamides; Anti-Bacterial Agents; Chloramphenicol; DNA Transposable Elements; Gene Expression Regulation, Bacterial; Linezolid; Mutation; Oxazolidinones; Spectinomycin; Staphylococcus aureus; Temperature | 2013 |
Investigation of a multiresistance gene cfr that fails to mediate resistance to phenicols and oxazolidinones in Enterococcus faecalis.
Topics: Animals; Anti-Bacterial Agents; Bacterial Proteins; Blotting, Southern; Cattle; Chloramphenicol; Conjugation, Genetic; DNA, Bacterial; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Enterococcus faecalis; Gene Expression Profiling; Microbial Sensitivity Tests; Molecular Sequence Data; Oxazolidinones; Plasmids; Reverse Transcriptase Polymerase Chain Reaction; RNA, Ribosomal, 23S; Sequence Analysis, DNA; Thiamphenicol; Transcription, Genetic | 2014 |
A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.
Topics: Animals; Anti-Bacterial Agents; Chloramphenicol; Cluster Analysis; Conjugation, Genetic; DNA, Bacterial; Drug Resistance, Bacterial; Enterococcus faecalis; Enterococcus faecium; Gene Transfer, Horizontal; Genes, Bacterial; Gram-Positive Bacterial Infections; Humans; Microbial Sensitivity Tests; Molecular Sequence Data; Oxazolidinones; Phylogeny; Plasmids; Sequence Analysis, DNA; Sequence Homology; Transformation, Bacterial | 2015 |
Feasibility of a novel multispot nanoarray for antibiotic screening in honey.
Topics: Animals; Anti-Bacterial Agents; Antibodies; Bees; Chloramphenicol; Food Contamination; High-Throughput Screening Assays; Honey; Humans; Hydantoins; Immunoassay; Limit of Detection; Morpholines; Oxazolidinones; Semicarbazides; Veterinary Drugs | 2017 |
Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses.
Topics: Animals; Anti-Bacterial Agents; Bacterial Typing Techniques; Cattle; Chickens; Chloramphenicol; Drug Resistance, Bacterial; Electrophoresis, Gel, Pulsed-Field; Enterococcus; Enterococcus faecalis; Feces; Food Microbiology; Gram-Positive Bacterial Infections; Linezolid; Multilocus Sequence Typing; Mutation; Oxazolidinones; Republic of Korea; Swine; Thiamphenicol | 2017 |
Topics: Antitubercular Agents; Base Sequence; Binding Sites; Chloramphenicol; DNA, Bacterial; Drug Resistance, Multiple, Bacterial; Humans; Linezolid; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Oxazolidinones; Protein Synthesis Inhibitors; Ribosomal Protein L3; Ribosomal Proteins; RNA, Ribosomal, 23S; Sequence Analysis, DNA; Tuberculosis, Pulmonary | 2017 |
Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters.
Topics: Anti-Bacterial Agents; Chloramphenicol; Cities; Disk Diffusion Antimicrobial Tests; DNA, Bacterial; Drug Resistance, Bacterial; Enterococcus faecalis; Gene Order; Genes, Bacterial; Multilocus Sequence Typing; Oxazolidinones; Plasmids; Polymerase Chain Reaction; Tunisia; Wastewater; Whole Genome Sequencing | 2017 |
Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin.
Topics: Anti-Bacterial Agents; Bacterial Proteins; Chloramphenicol; Computational Biology; Cystic Fibrosis; Drug Resistance, Multiple, Bacterial; Genes, Bacterial; Genome, Bacterial; Humans; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Oxazolidinones; Plasmids; Staphylococcal Infections; Whole Genome Sequencing | 2018 |
Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates.
Topics: Anti-Infective Agents; Chloramphenicol; Conjugation, Genetic; Drug Resistance, Bacterial; Enterococcus faecalis; Enterococcus faecium; Gene Order; Gene Transfer, Horizontal; Genes, Bacterial; Genetic Variation; Germany; Gram-Positive Bacterial Infections; Humans; Interspersed Repetitive Sequences; Oxazolidinones; Polymerase Chain Reaction; Retrospective Studies; Whole Genome Sequencing | 2018 |
Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses.
Topics: Animals; Anti-Bacterial Agents; Anti-Infective Agents; Bacterial Proteins; Chloramphenicol; Ciprofloxacin; Drug Resistance, Multiple, Bacterial; Ducks; Enterococcus faecalis; Enterococcus faecium; Erythromycin; Feces; Genes, Bacterial; Linezolid; Microbial Sensitivity Tests; Multilocus Sequence Typing; Oxazolidinones; Republic of Korea; Ribosomal Protein L3; RNA, Ribosomal, 23S; Tetracycline; Thiamphenicol | 2019 |
Detection of the phenicol-oxazolidinone-tetracycline resistance gene poxtA in Enterococcus faecium and Enterococcus faecalis of food-producing animal origin in China.
Topics: Animals; Animals, Domestic; Anti-Bacterial Agents; China; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Enterococcus faecalis; Enterococcus faecium; Genes, Bacterial; Gram-Positive Bacterial Infections; Microbial Sensitivity Tests; Multilocus Sequence Typing; Oxazolidinones; Sequence Analysis, DNA; Tetracycline | 2019 |
A prophage and two ICESa2603-family integrative and conjugative elements (ICEs) carrying optrA in Streptococcus suis.
Topics: Animals; Anti-Bacterial Agents; Chloramphenicol; Conjugation, Genetic; Drug Resistance, Bacterial; Gene Transfer, Horizontal; Genes, Bacterial; Interspersed Repetitive Sequences; Microbial Sensitivity Tests; Oxazolidinones; Polymerase Chain Reaction; Prophages; Streptococcal Infections; Streptococcus suis; Swine; Swine Diseases; Whole Genome Sequencing | 2019 |
Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli.
Topics: Animals; Anti-Bacterial Agents; Campylobacter coli; Chickens; China; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Ducks; Enterococcus; Genes, Bacterial; Genomic Islands; Linezolid; Microbial Sensitivity Tests; Oxazolidinones; Plasmids; Thiamphenicol | 2020 |
Investigation of radezolid interaction with non-canonical chloramphenicol binding site by molecular dynamics simulations.
Topics: Anti-Bacterial Agents; Binding Sites; Chloramphenicol; Escherichia coli; Molecular Dynamics Simulation; Oxazolidinones | 2021 |
Prevalence and Characteristics of Phenicol-Oxazolidinone Resistance Genes in
Topics: Animals; Anti-Infective Agents; Cattle; Chloramphenicol; Computational Biology; Drug Resistance, Multiple, Bacterial; Enterococcus faecalis; Enterococcus faecium; Food Analysis; Gene Transfer, Horizontal; Genes, Bacterial; Genome, Bacterial; Meat; Multilocus Sequence Typing; Oxazolidinones; Plasmids; Republic of Korea; Swine; Whole Genome Sequencing | 2021 |
Putting the antibiotics chloramphenicol and linezolid into context.
Topics: Anti-Bacterial Agents; Bacteria; Chloramphenicol; Drug Development; Drug Resistance, Bacterial; Humans; Linezolid; Models, Molecular; Oxazolidinones; Protein Biosynthesis; Protein Synthesis Inhibitors; Ribosomes; Structure-Activity Relationship | 2022 |