Page last updated: 2024-08-25

oxazolidin-2-one and chloramphenicol

oxazolidin-2-one has been researched along with chloramphenicol in 32 studies

Research

Studies (32)

TimeframeStudies, this research(%)All Research%
pre-19901 (3.13)18.7374
1990's1 (3.13)18.2507
2000's10 (31.25)29.6817
2010's16 (50.00)24.3611
2020's4 (12.50)2.80

Authors

AuthorsStudies
Eustice, DC; Feldman, PA; Slee, AM1
Lin, AH; Marotti, KR; Murray, RW; Vidmar, TJ1
Dahlberg, AE; Mills, JA; O'Connor, M; Thompson, J1
Bobkova, EV; Jordan, DB; Kurilla, MG; Pompliano, DL; Yan, YP1
Hyun, S; Jeong, S; Kwon, M; Lee, J; Lee, KH; Shin, KJ; Yu, J1
Athamna, A; Athamna, M; Bast, DJ; Medlej, B; Rubinstein, E1
Farrell, DJ; Jorgensen, JH; Klugman, KP; Moore, M; Schaffner, W; Smith, AM; Whitney, CG; Wolter, N1
Cole-Sinclair, M; Davis, A; Dawson, MA; Elliott, P1
Kehrenberg, C; Long, KS; Poehlsgaard, J; Schwarz, S; Vester, B1
Clark, NC; Donlan, RM; Dumas, N; Jensen, B; Kohlerschmidt, D; Limberger, RJ; McDougal, LK; Musser, KA; Patel, JB; Shin, DH; Thompson, J; Weigel, LM; Zhu, W1
Duewelhenke, N; Eysel, P; Krut, O1
Arias, CA; Castañeda, E; Moreno, J; Murray, BE; Panesso, D; Quinn, JP; Reyes, J; Vallejo, M; Villegas, MV1
Bohnhorst, B; Hansen, G; Hartmann, C; Hermann, E; Peter, C; Sedlacek, L; Ure, B1
Barnhill, AE; Brewer, MT; Carlson, SA1
Lambert, T1
Ono, Y1
Bierbaum, G; Josten, M; Sahl, HG; Schreiber, F; Szekat, C1
Chen, L; Liu, Y; Schwarz, S; Shen, J; Wang, S; Wang, Y; Wu, C1
Cai, J; Cui, L; Deng, X; Feßler, AT; He, T; Hu, Z; Li, J; Li, Y; Lv, Y; Schwarz, S; Shen, J; Shen, Y; Wang, D; Wang, Y; Wang, Z; Wu, C; Xia, X; Yu, H; Zhang, R; Zhao, Q1
Campbell, K; Elliott, CT; McNamee, SE; Persic, L; Rosar, G1
Jang, GC; Jung, SC; Kang, HY; Kim, SR; Lee, HS; Lee, K; Lim, SK; Moon, DC; Nam, HM; Tamang, MD1
Dennison, DD; McNeil, MB; Parish, T; Shelton, CD1
Abbassi, MS; Coque, TM; Elghaieb, H; Freitas, AR; Hassen, A; León-Sampedro, R; Novais, C; Peixe, L1
Antonelli, A; Brenciani, A; D'Andrea, MM; Galeotti, CL; Morroni, G; Pollini, S; Rossolini, GM; Varaldo, PE1
Bender, JK; Fleige, C; Klare, I; Lange, D; Werner, G1
Choi, MJ; Hyun, BH; Jung, DY; Kang, HY; Lim, SK; Moon, DC; Na, SH; Oh, SJ1
Chen, YP; Kang, ZZ; Kong, LH; Lei, CW; Wang, HN; Wu, SK1
Du, XD; Hao, W; Li, D; Li, XS; Liu, B; Schwarz, S; Shan, X; Shang, Y; Zhang, SM1
Feßler, AT; Li, X; Liu, D; Liu, X; Schwarz, S; Shen, J; Shen, Z; Wang, Y; Yang, D1
Makarov, GI; Reshetnikova, RV1
Cha, MH; Gwak, YS; Kim, E; Kim, HY; Kwak, HS; Shin, SW; Woo, GJ; Yang, SM1
Crowe-McAuliffe, C; Wilson, DN1

Reviews

2 review(s) available for oxazolidin-2-one and chloramphenicol

ArticleYear
Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components.
    Antimicrobial agents and chemotherapy, 2012, Volume: 56, Issue:8

    Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; Chloramphenicol; DNA Topoisomerases, Type I; Fluoroquinolones; Humans; Linezolid; Mitochondria; Oxazolidinones; Protein Biosynthesis; Ribosomes

2012
Antibiotics that affect the ribosome.
    Revue scientifique et technique (International Office of Epizootics), 2012, Volume: 31, Issue:1

    Topics: Aminoglycosides; Animals; Anti-Bacterial Agents; Chloramphenicol; Diterpenes; Drug Resistance, Bacterial; Fusidic Acid; Humans; Macrolides; Methyltransferases; Oxazolidinones; Pleuromutilins; Polycyclic Compounds; Protein Synthesis Inhibitors; Ribosomal Proteins; Ribosome Subunits, Large, Bacterial; Ribosomes; RNA, Ribosomal, 16S; Tetracyclines

2012

Other Studies

30 other study(ies) available for oxazolidin-2-one and chloramphenicol

ArticleYear
The mechanism of action of DuP 721, a new antibacterial agent: effects on macromolecular synthesis.
    Biochemical and biophysical research communications, 1988, Feb-15, Volume: 150, Issue:3

    Topics: Anti-Bacterial Agents; Bacillus subtilis; Bacterial Proteins; Chloramphenicol; DNA, Bacterial; Drug Resistance, Microbial; Hygromycin B; Microbial Sensitivity Tests; Mutation; Oxazoles; Oxazolidinones; Peptide Chain Elongation, Translational; RNA, Bacterial; Streptomycin; Tetracycline

1988
The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin.
    Antimicrobial agents and chemotherapy, 1997, Volume: 41, Issue:10

    Topics: Acetamides; Anti-Bacterial Agents; Chloramphenicol; Escherichia coli; Kinetics; Lincomycin; Oxazoles; Oxazolidinones; Puromycin; Ribosomes

1997
The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo.
    Journal of molecular biology, 2002, Sep-13, Volume: 322, Issue:2

    Topics: Acetamides; Amino Acids; Aminoglycosides; Anti-Bacterial Agents; Chloramphenicol; Codon, Terminator; Drug Resistance, Bacterial; Escherichia coli; Frameshifting, Ribosomal; Genes, Reporter; Lac Operon; Linezolid; Mutation, Missense; Oxazolidinones; Protein Biosynthesis; Protein Synthesis Inhibitors

2002
Catalytic properties of mutant 23 S ribosomes resistant to oxazolidinones.
    The Journal of biological chemistry, 2003, Mar-14, Volume: 278, Issue:11

    Topics: Antibiotics, Antineoplastic; Binding Sites; Catalysis; Catalytic Domain; Chloramphenicol; Dose-Response Relationship, Drug; Drug Resistance; Escherichia coli; Inhibitory Concentration 50; Kinetics; Models, Chemical; Models, Molecular; Mutagenesis, Site-Directed; Mutation; Oxazolidinones; Peptidyl Transferases; Protein Binding; Protein Synthesis Inhibitors; Puromycin; RNA, Ribosomal, 23S; RNA, Transfer, Met; Sparsomycin

2003
An approach to enhance specificity against RNA targets using heteroconjugates of aminoglycosides and chloramphenicol (or linezolid).
    Journal of the American Chemical Society, 2004, Feb-25, Volume: 126, Issue:7

    Topics: Acetamides; Aminoglycosides; Chloramphenicol; Framycetin; Linezolid; Nucleic Acid Conformation; Oxazolidinones; RNA; Structure-Activity Relationship; Substrate Specificity

2004
In vitro post-antibiotic effect of fluoroquinolones, macrolides, beta-lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin/dalfopristin and rifampicin on Bacillus anthracis.
    The Journal of antimicrobial chemotherapy, 2004, Volume: 53, Issue:4

    Topics: Acetamides; Anti-Bacterial Agents; Bacillus anthracis; beta-Lactams; Chloramphenicol; Clindamycin; Fluoroquinolones; Linezolid; Macrolides; Microbial Sensitivity Tests; Oxazolidinones; Rifampin; Tetracyclines; Vancomycin; Virginiamycin

2004
Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus.
    Antimicrobial agents and chemotherapy, 2005, Volume: 49, Issue:8

    Topics: Anti-Infective Agents; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Humans; Macrolides; Microbial Sensitivity Tests; Mutation; Oxazolidinones; Ribosomal Proteins; Streptococcus pneumoniae

2005
Linezolid-induced dyserythropoiesis: chloramphenicol toxicity revisited.
    Internal medicine journal, 2005, Volume: 35, Issue:10

    Topics: Acetamides; Aged; Anemia, Hemolytic; Bone Marrow; Chloramphenicol; Erythropoiesis; Hemoglobins; Humans; Linezolid; Male; Middle Aged; Oxazolidinones; Protein Synthesis Inhibitors; Reticulocyte Count; Reticulocytes; Sepsis; Staphylococcal Infections

2005
The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics.
    Antimicrobial agents and chemotherapy, 2006, Volume: 50, Issue:7

    Topics: Anti-Bacterial Agents; Chloramphenicol; Diterpenes; Drug Resistance, Multiple, Bacterial; Escherichia coli; Escherichia coli Proteins; Humans; Lincosamides; Macrolides; Methyltransferases; Microbial Sensitivity Tests; Oxazolidinones; Peptidyl Transferases; Pleuromutilins; Polycyclic Compounds; Ribosomes; Staphylococcus aureus; Streptogramin A; Thiamphenicol

2006
High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm.
    Antimicrobial agents and chemotherapy, 2007, Volume: 51, Issue:1

    Topics: Acetamides; Aminoglycosides; Biofilms; Catheters, Indwelling; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Enterococcus faecalis; Enterococcus faecium; Female; Fluoroquinolones; Humans; Linezolid; Macrolides; Microbial Sensitivity Tests; Micrococcus; Middle Aged; Morganella morganii; Oxazolidinones; Penicillins; Pseudomonas aeruginosa; Rifampin; Staphylococcus aureus; Tetracyclines; Trimethoprim, Sulfamethoxazole Drug Combination; Urinary Catheterization; Vancomycin; Vancomycin Resistance

2007
Influence on mitochondria and cytotoxicity of different antibiotics administered in high concentrations on primary human osteoblasts and cell lines.
    Antimicrobial agents and chemotherapy, 2007, Volume: 51, Issue:1

    Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; Antimycin A; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cells, Cultured; Chloramphenicol; Clindamycin; Dose-Response Relationship, Drug; Fluoroquinolones; Glycolysis; HeLa Cells; Humans; Lactic Acid; Linezolid; Macrolides; Mitochondria; Osteoblasts; Oxazolidinones; Rotenone; Tetracyclines; Time Factors

2007
Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase.
    Journal of clinical microbiology, 2008, Volume: 46, Issue:3

    Topics: Acetamides; Anti-Bacterial Agents; Bacterial Proteins; Chloramphenicol; Colombia; Contact Tracing; Cross Infection; Drug Resistance, Bacterial; Family Characteristics; Fatal Outcome; Female; Humans; Linezolid; Methicillin Resistance; Methyltransferases; Microbial Sensitivity Tests; Middle Aged; Oxazolidinones; RNA, Ribosomal, 23S; Staphylococcal Infections; Staphylococcus aureus; Thiamphenicol

2008
Successful treatment of vancomycin-resistant Enterococcus faecium ventriculitis with combined intravenous and intraventricular chloramphenicol in a newborn.
    Journal of medical microbiology, 2010, Volume: 59, Issue:Pt 11

    Topics: Acetamides; Anti-Bacterial Agents; Cerebral Ventricles; Cerebrospinal Fluid; Chloramphenicol; Encephalitis; Enterococcus faecium; Female; Gentamicins; Gram-Positive Bacterial Infections; Head; Humans; Infant, Newborn; Infusions, Intravenous; Injections, Intraventricular; Linezolid; Lumbosacral Region; Magnetic Resonance Imaging; Oxazolidinones; Pelvis; Radiography; Treatment Outcome; Vancomycin Resistance

2010
[Antibiotics].
    Nihon rinsho. Japanese journal of clinical medicine, 2012, Volume: 70 Suppl 6

    Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; beta-Lactams; Chloramphenicol; Fosfomycin; Glycopeptides; Humans; Ketolides; Linezolid; Macrolides; Oxazolidinones; Peptides; Streptogramins; Tetracyclines; Trimethoprim, Sulfamethoxazole Drug Combination

2012
Antibiotic-induced autoactivation of IS256 in Staphylococcus aureus.
    Antimicrobial agents and chemotherapy, 2013, Volume: 57, Issue:12

    Topics: Acetamides; Anti-Bacterial Agents; Chloramphenicol; DNA Transposable Elements; Gene Expression Regulation, Bacterial; Linezolid; Mutation; Oxazolidinones; Spectinomycin; Staphylococcus aureus; Temperature

2013
Investigation of a multiresistance gene cfr that fails to mediate resistance to phenicols and oxazolidinones in Enterococcus faecalis.
    The Journal of antimicrobial chemotherapy, 2014, Volume: 69, Issue:4

    Topics: Animals; Anti-Bacterial Agents; Bacterial Proteins; Blotting, Southern; Cattle; Chloramphenicol; Conjugation, Genetic; DNA, Bacterial; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Enterococcus faecalis; Gene Expression Profiling; Microbial Sensitivity Tests; Molecular Sequence Data; Oxazolidinones; Plasmids; Reverse Transcriptase Polymerase Chain Reaction; RNA, Ribosomal, 23S; Sequence Analysis, DNA; Thiamphenicol; Transcription, Genetic

2014
A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.
    The Journal of antimicrobial chemotherapy, 2015, Volume: 70, Issue:8

    Topics: Animals; Anti-Bacterial Agents; Chloramphenicol; Cluster Analysis; Conjugation, Genetic; DNA, Bacterial; Drug Resistance, Bacterial; Enterococcus faecalis; Enterococcus faecium; Gene Transfer, Horizontal; Genes, Bacterial; Gram-Positive Bacterial Infections; Humans; Microbial Sensitivity Tests; Molecular Sequence Data; Oxazolidinones; Phylogeny; Plasmids; Sequence Analysis, DNA; Sequence Homology; Transformation, Bacterial

2015
Feasibility of a novel multispot nanoarray for antibiotic screening in honey.
    Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 2017, Volume: 34, Issue:4

    Topics: Animals; Anti-Bacterial Agents; Antibodies; Bees; Chloramphenicol; Food Contamination; High-Throughput Screening Assays; Honey; Humans; Hydantoins; Immunoassay; Limit of Detection; Morpholines; Oxazolidinones; Semicarbazides; Veterinary Drugs

2017
Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses.
    Veterinary microbiology, 2017, Volume: 201

    Topics: Animals; Anti-Bacterial Agents; Bacterial Typing Techniques; Cattle; Chickens; Chloramphenicol; Drug Resistance, Bacterial; Electrophoresis, Gel, Pulsed-Field; Enterococcus; Enterococcus faecalis; Feces; Food Microbiology; Gram-Positive Bacterial Infections; Linezolid; Multilocus Sequence Typing; Mutation; Oxazolidinones; Republic of Korea; Swine; Thiamphenicol

2017
    Antimicrobial agents and chemotherapy, 2017, Volume: 61, Issue:10

    Topics: Antitubercular Agents; Base Sequence; Binding Sites; Chloramphenicol; DNA, Bacterial; Drug Resistance, Multiple, Bacterial; Humans; Linezolid; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Oxazolidinones; Protein Synthesis Inhibitors; Ribosomal Protein L3; Ribosomal Proteins; RNA, Ribosomal, 23S; Sequence Analysis, DNA; Tuberculosis, Pulmonary

2017
Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters.
    The Journal of antimicrobial chemotherapy, 2017, Dec-01, Volume: 72, Issue:12

    Topics: Anti-Bacterial Agents; Chloramphenicol; Cities; Disk Diffusion Antimicrobial Tests; DNA, Bacterial; Drug Resistance, Bacterial; Enterococcus faecalis; Gene Order; Genes, Bacterial; Multilocus Sequence Typing; Oxazolidinones; Plasmids; Polymerase Chain Reaction; Tunisia; Wastewater; Whole Genome Sequencing

2017
Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin.
    The Journal of antimicrobial chemotherapy, 2018, 07-01, Volume: 73, Issue:7

    Topics: Anti-Bacterial Agents; Bacterial Proteins; Chloramphenicol; Computational Biology; Cystic Fibrosis; Drug Resistance, Multiple, Bacterial; Genes, Bacterial; Genome, Bacterial; Humans; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Oxazolidinones; Plasmids; Staphylococcal Infections; Whole Genome Sequencing

2018
Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates.
    International journal of antimicrobial agents, 2018, Volume: 52, Issue:6

    Topics: Anti-Infective Agents; Chloramphenicol; Conjugation, Genetic; Drug Resistance, Bacterial; Enterococcus faecalis; Enterococcus faecium; Gene Order; Gene Transfer, Horizontal; Genes, Bacterial; Genetic Variation; Germany; Gram-Positive Bacterial Infections; Humans; Interspersed Repetitive Sequences; Oxazolidinones; Polymerase Chain Reaction; Retrospective Studies; Whole Genome Sequencing

2018
Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses.
    International journal of food microbiology, 2019, Mar-16, Volume: 293

    Topics: Animals; Anti-Bacterial Agents; Anti-Infective Agents; Bacterial Proteins; Chloramphenicol; Ciprofloxacin; Drug Resistance, Multiple, Bacterial; Ducks; Enterococcus faecalis; Enterococcus faecium; Erythromycin; Feces; Genes, Bacterial; Linezolid; Microbial Sensitivity Tests; Multilocus Sequence Typing; Oxazolidinones; Republic of Korea; Ribosomal Protein L3; RNA, Ribosomal, 23S; Tetracycline; Thiamphenicol

2019
Detection of the phenicol-oxazolidinone-tetracycline resistance gene poxtA in Enterococcus faecium and Enterococcus faecalis of food-producing animal origin in China.
    The Journal of antimicrobial chemotherapy, 2019, 08-01, Volume: 74, Issue:8

    Topics: Animals; Animals, Domestic; Anti-Bacterial Agents; China; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Enterococcus faecalis; Enterococcus faecium; Genes, Bacterial; Gram-Positive Bacterial Infections; Microbial Sensitivity Tests; Multilocus Sequence Typing; Oxazolidinones; Sequence Analysis, DNA; Tetracycline

2019
A prophage and two ICESa2603-family integrative and conjugative elements (ICEs) carrying optrA in Streptococcus suis.
    The Journal of antimicrobial chemotherapy, 2019, 10-01, Volume: 74, Issue:10

    Topics: Animals; Anti-Bacterial Agents; Chloramphenicol; Conjugation, Genetic; Drug Resistance, Bacterial; Gene Transfer, Horizontal; Genes, Bacterial; Interspersed Repetitive Sequences; Microbial Sensitivity Tests; Oxazolidinones; Polymerase Chain Reaction; Prophages; Streptococcal Infections; Streptococcus suis; Swine; Swine Diseases; Whole Genome Sequencing

2019
Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli.
    Veterinary microbiology, 2020, Volume: 246

    Topics: Animals; Anti-Bacterial Agents; Campylobacter coli; Chickens; China; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Ducks; Enterococcus; Genes, Bacterial; Genomic Islands; Linezolid; Microbial Sensitivity Tests; Oxazolidinones; Plasmids; Thiamphenicol

2020
Investigation of radezolid interaction with non-canonical chloramphenicol binding site by molecular dynamics simulations.
    Journal of molecular graphics & modelling, 2021, Volume: 105

    Topics: Anti-Bacterial Agents; Binding Sites; Chloramphenicol; Escherichia coli; Molecular Dynamics Simulation; Oxazolidinones

2021
Prevalence and Characteristics of Phenicol-Oxazolidinone Resistance Genes in
    International journal of molecular sciences, 2021, Oct-20, Volume: 22, Issue:21

    Topics: Animals; Anti-Infective Agents; Cattle; Chloramphenicol; Computational Biology; Drug Resistance, Multiple, Bacterial; Enterococcus faecalis; Enterococcus faecium; Food Analysis; Gene Transfer, Horizontal; Genes, Bacterial; Genome, Bacterial; Meat; Multilocus Sequence Typing; Oxazolidinones; Plasmids; Republic of Korea; Swine; Whole Genome Sequencing

2021
Putting the antibiotics chloramphenicol and linezolid into context.
    Nature structural & molecular biology, 2022, Volume: 29, Issue:2

    Topics: Anti-Bacterial Agents; Bacteria; Chloramphenicol; Drug Development; Drug Resistance, Bacterial; Humans; Linezolid; Models, Molecular; Oxazolidinones; Protein Biosynthesis; Protein Synthesis Inhibitors; Ribosomes; Structure-Activity Relationship

2022