oxantel and methyridine

oxantel has been researched along with methyridine* in 2 studies

Other Studies

2 other study(ies) available for oxantel and methyridine

ArticleYear
Oxantel is an N-type (methyridine and nicotine) agonist not an L-type (levamisole and pyrantel) agonist: classification of cholinergic anthelmintics in Ascaris.
    International journal for parasitology, 2004, Volume: 34, Issue:9

    Three pharmacological subtypes of cholinergic receptors have been distinguished in Ascaris suum using a muscle contraction assay and classical pharmacological techniques. The receptor subtypes are: a B-subtype (sensitive to bephenium); an L-subtype (sensitive to levamisole and pyrantel); and an N-subtype (sensitive to nicotine and methyridine). Oxantel is a cholinergic anthelmintic that was first introduced for the treatment of whipworm, Trichuris, infections in children. Here, we compare the subtype selectivity of oxantel with thenium and other cholinergic anthelmintics. We used the A. suum assay to derive pA(2) values for the agonists: oxantel, thenium, bephenium, levamisole, pyrantel, nicotine and methyridine with the antagonists: paraherquamide, 2-desoxyparaherquamide and methyllycaconitine. pA(2) values, rather than pK(B) values, were determined for all agonists when it was found that Schild slopes for some agonists were significantly less than 1.0. The pA(2) of oxantel was 6.58+/-0.25 for paraherquamide; 5.39+/-0.28 for 2-desoxyparaherquamide; 7.01+/-0.19 for methyllycaconitine. Comparison of pA(2) values using cluster analysis showed that oxantel was grouped with nicotine and methyridine, the N-subtype agonists. Thenium had pA(2)s of 7.84+/-0.41 for paraherquamide; 5.52+/-0.50 for 2-desoxyparaherquamide; 6.33+/-0.19 for methyllycaconitine. Cluster analysis placed thenium between the L-subtype agonists and the B-subtype agonist. The therapeutic significance of classification of cholinergic anthelmintics is discussed. Combination of oxantel and pyrantel would have therapeutic advantages, covering N- and L-subtypes, and so increasing spectrum of action and reducing the potential for development of resistance. Our results predict that oxantel may remain effective in some nematode isolates that have become levamisole- and pyrantel-resistant.

    Topics: Animals; Anthelmintics; Ascaris suum; Cluster Analysis; Dose-Response Relationship, Drug; Levamisole; Nicotine; Nicotinic Agonists; Nicotinic Antagonists; Pyrantel; Pyridines; Receptors, Cholinergic

2004
Anthelmintic actions on homomer-forming nicotinic acetylcholine receptor subunits: chicken alpha7 and ACR-16 from the nematode Caenorhabditis elegans.
    Neuroscience, 2000, Volume: 101, Issue:3

    Two homomer-forming nicotinic acetylcholine receptor subunits with 47% identity in their amino acid sequences were employed to compare the actions of cholinergic anthelmintics and ivermectin on expressed vertebrate and nematode nicotinic receptors of known molecular composition. Voltage-clamp electrophysiology was used to study recombinant nicotinic receptors expressed in Xenopus laevis oocytes following nuclear injection of cDNA encoding either chicken alpha7 or Caenorhabditis elegans ACR-16 (Ce21) subunits. Butamisole, morantel and metyridine were without agonist actions on either alpha7 or ACR-16 nicotinic receptors in the range 10nM-1mM. However, butamisole (pIC(50)=4.9 for both alpha7 and ACR-16) and morantel (pIC(50)=5.6 for alpha7 and 5.7 for ACR-16) antagonized responses of both alpha7 and ACR-16 receptors to acetylcholine. Metyridine (1mM) did not affect responses to acetylcholine of either receptor. Oxantel was without agonist actions on ACR-16, but was an acetylcholine antagonist (pIC(50)=5.4). In contrast, it was found to have low efficacy agonist action (pEC(50)=4.4) on alpha7 at concentrations in the range 10-300microM. In agreement with a previous study, ivermectin (30microM), an agonist of L-glutamate-gated chloride channels, enhanced the amplitude of responses to acetylcholine of alpha7 nicotinic receptors. However, this same concentration of ivermectin (30microM) did not potentiate the acetylcholine-induced responses of ACR-16, but rather resulted in a slight attenuation. We conclude that oxantel and ivermectin have identified new pharmacological differences between the chicken alpha7 nicotinic receptor and its C. elegans homologue ACR-16.

    Topics: Acetylcholine; alpha7 Nicotinic Acetylcholine Receptor; Animals; Anthelmintics; Caenorhabditis elegans; Chickens; DNA, Complementary; Female; Ivermectin; Morantel; Oocytes; Pyrantel; Pyridines; Receptors, Nicotinic; Sequence Homology; Thiazoles; Xenopus laevis

2000