ovalbumin has been researched along with sodium-bisulfide* in 3 studies
3 other study(ies) available for ovalbumin and sodium-bisulfide
Article | Year |
---|---|
Hydrogen sulfide diminishes the levels of thymic stromal lymphopoietin in activated mast cells.
Bamboo salt (BS) is a Korean traditional type of salt and has been reported to have therapeutic effects on allergic inflammation. Thymic stromal lymphopoietin (TSLP) aggravates inflammation in the pathogenesis of allergic reactions, such as allergic rhinitis (AR). To confirm an active compound of BS, we investigated the effect of sulfur, a compound of BS, on the levels of TSLP in a human mast cell line, HMC-1 cells and a mouse model of AR using hydrogen sulfide (H2S) donor, sodium hydrosulfide (NaSH). We treated NaSH or BS in HMC-1 cells and activated the HMC-1 cells with phorbol myristate acetate and calcium ionophore A23187 (PMACI). ELISA for the production measurement of TSLP, PCR for the mRNA expression measurement of TSLP, and western blot analysis for the expression measurement of upstream mediators were performed. Mice were treated with NaSH and sensitized with ovalbumin (OVA). The levels of TSLP were measured in serum and nasal mucosa tissue in an OVA-induced AR mouse model. NaSH or BS diminished the production and mRNA expression of TSLP as well as interleukin (IL)-6 and tumor necrosis factor (TNF)-α in the PMACI-activated HMC-1 cells. NaSH or BS diminished the level of intracellular calcium in the PMACI-activated HMC-1 cells. NaSH or BS reduced the expression and activity of caspase-1 in the PMACI-activated HMC-1 cells. And NaSH or BS inhibited the expression of receptor interacting protein-2 and the phosphorylation of extracellular signal-regulated kinase in the PMACI-activated HMC-1 cells. The translocation of NF-κB into the nucleus as well as the phosphorylation and degradation of IκBα in the cytoplasm were diminished by NaSH or BS in the PMACI-activated HMC-1 cells. Furthermore, NaSH inhibited the production of TSLP, IL-6, and IL-8 in TNF-α-activated HMC-1 cells. Finally, the administration of NaSH showed a decrease in number of rubs on mice with OVA-induced AR. And the levels of immunoglobulin E and TSLP in the serum and the level of TSLP in the nasal mucosa tissue of the OVA-induced AR mice were reduced by NaSH. In conclusion, these findings show that H2S, as an active compound of BS is a potential agent to cure allergic inflammation. Topics: Active Transport, Cell Nucleus; Animals; Calcimycin; Calcium; Caspase 1; Cell Line; Cytokines; Extracellular Signal-Regulated MAP Kinases; Female; Humans; Hydrogen Sulfide; I-kappa B Proteins; Immunoglobulin E; Interleukin-6; Interleukin-8; Mast Cells; Medicine, Korean Traditional; Mice; Mice, Inbred BALB C; NF-kappa B; NF-KappaB Inhibitor alpha; Ovalbumin; Phosphorylation; Real-Time Polymerase Chain Reaction; Receptor-Interacting Protein Serine-Threonine Kinase 2; Rhinitis, Allergic; RNA, Messenger; Sulfides; Tetradecanoylphorbol Acetate; Thymic Stromal Lymphopoietin; Tumor Necrosis Factor-alpha | 2016 |
The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma.
Cystathionine γ-lyase (CSE) is one of the major enzymes producing hydrogen sulfide (H2S) in lungs, participating in the regulation of respiratory functions. The role of CSE-derived H2S in eosinophil-dominant inflammation in allergic diseases has been unclear. The objective of this study was to explore the protective role of H2S against allergen-induced airway hyperresponsiveness (AHR) and inflammation. CSE expression and H2S production rate were assessed in mouse lung tissues with ovalbumin (OVA)-induced acute asthma. AHR, airway inflammation, and Th2 response in wild-type (WT) mice were compared with those in CSE gene knockout (KO) mice. The effect of NaHS, an exogenous H2S donor, was also evaluated on these parameters. CSE expression was absent and H2S production rate was significantly lower in the lungs of CSE KO mice when compared with WT littermates. OVA challenge decreased lung CSE expression and H2S production in WT mice. CSE deficiency resulted in aggravated AHR, increased airway inflammation, and elevated levels of Th2 cytokines such as IL-5, IL-13, and eotaxin-1 in bronchoalveolar lavage fluid after OVA challenge. The aforementioned alterations were reversed by exogenous H2S treatment. More importantly, NaHS supplement rescued CSE KO mice from the aggravated pathological process of asthma. The CSE/H2S system plays a critical protective role in the development of asthma. A new therapeutic potential for asthma via targeting CSE/H2S metabolism is indicated. Topics: Animals; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Cell Survival; Cystathionine gamma-Lyase; Cytokines; Disease Models, Animal; Inflammation; Lung; Lymphocytes; Mice; Mice, Inbred C57BL; Mice, Knockout; Ovalbumin; Sulfides; Th2 Cells | 2013 |
Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma.
Endogenous hydrogen sulfide (H(2)S) is hypothesized to have an important role in systemic inflammation. We investigated if endogenous H(2)S may be a crucial mediator in airway inflammation and airway remodeling in a rat model of asthma and if endogenous H(2)S may exert its anti-inflammatory effect by inhibiting inducible nitric oxide synthase (iNOS)/NO pathway. Cystathionine-gamma-lyase (CSE; a H(2)S-synthesizing enzyme) was mainly expressed in airway and vascular smooth muscle cells in rat lung tissue. Levels of endogenous H(2)S was decreased in pulmonary tissue in ovalbumin (OVA)-treated rats. Exogenous administration of NaHS alleviated airway inflammation and airway remodeling: peak expiratory flow (PEF) increased, goblet cell hyperplasia and collagen deposition score decreased, with decreased total cells recovered from bronchoalveolar fluid (BALF) and influx of eosinophils and neutrophils. The H(2)S levels of serum and lung tissue were positively correlated with PEF and negatively correlated with the level of eosinophils and neutrophils in BALF, score of lung pathology. NaHS treatment significantly attenuated pulmonary iNOS activation in OVA-treated rats. These results suggest that the CSE/H(2)S pathway plays an anti-inflammatory and anti-remodeling part in asthma pathogenesis and could be a novel target in prevention and treatment of asthma. Topics: Animals; Asthma; Bronchoalveolar Lavage Fluid; Cystathionine gamma-Lyase; Disease Models, Animal; Enzyme Activation; Humans; Hydrogen Sulfide; Inflammation; Lung; Male; Nitric Oxide Synthase Type II; Ovalbumin; Random Allocation; Rats; Rats, Sprague-Dawley; Sulfides | 2009 |