ovalbumin and monobutyl-phthalate

ovalbumin has been researched along with monobutyl-phthalate* in 2 studies

Other Studies

2 other study(ies) available for ovalbumin and monobutyl-phthalate

ArticleYear
The effect of apigenin, an aryl hydrocarbon receptor antagonist, in Phthalate-Exacerbated eosinophilic asthma model.
    Journal of cellular and molecular medicine, 2023, Volume: 27, Issue:13

    Endocrine disrupting chemicals have been known to contribute to the aggravation of inflammatory diseases including asthma. We aimed to investigate the effects of mono-n-butyl phthalate (MnBP) which is one of the representing phthalates, and its antagonist in an eosinophilic asthma mouse model. BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA) with alum and followed by three nebulized OVA challenges. MnBP was administered through drinking water administration throughout the study period, and its antagonist, apigenin, was orally treated for 14 days before OVA challenges. Mice were assessed for airway hyperresponsiveness (AHR), differential cell count and type 2 cytokines in bronchoalveolar lavage fluid were measured in vivo. The expression of the aryl hydrocarbon receptor was markedly increased when MnBP was administered. MnBP treatment increased AHR, airway inflammatory cells (including eosinophils), and type 2 cytokines following OVA challenge compared to vehicle-treated mice. However, apigenin treatment reduced all asthma features, such as AHR, airway inflammation, type 2 cytokines, and the expression of the aryl hydrocarbon receptor in MnBP-augmented eosinophilic asthma. Our study suggests that MnBP exposure may increase the risk of eosinophilic inflammation, and apigenin treatment may be a potential therapy for asthma exacerbated by endocrine-disrupting chemicals.

    Topics: Animals; Apigenin; Asthma; Bronchoalveolar Lavage Fluid; Cytokines; Disease Models, Animal; Inflammation; Lung; Mice; Mice, Inbred BALB C; Ovalbumin; Receptors, Aryl Hydrocarbon

2023
Mono-n-butyl phthalate regulates nuclear factor erythroid 2-related factor 2 and nuclear factor kappa B pathway in an ovalbumin-induced asthma mouse model.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2022, Volume: 166

    Recent studies have emphasized the role of endocrine-disrupting chemicals in asthma development, especially in eosinophilic asthma. However, the exact mechanism was unknown. Among all the endocrine-disrupting chemicals, mono-n-butyl phthalate (MnBP) was a chemical that was most frequently detected in human urine. Our study was performed with the aim of investigating the harmful effects of MnBP on airway epithelial cells (AECs), T cells, and eosinophils by using eosinophilic asthma mouse models. Mice that received OVA with MnBP had higher levels of airway hyperresponsiveness, total and eosinophil cell counts, as well as T cell proliferation and T helper 2 cytokine release than those which only received OVA. Moreover, MnBP contributed to directly enhancing the eosinophilic activation which was shown in. Long-term exposure MnBP activated AECs through the nuclear factor kappa B (NF-kB) pathway, decreased nuclear factor erythroid 2-related factor 2 (Nrf2) expression, and increased interleukin-33 expression. Additionally, MnBP can induce human eosinophil activation to release eosinophil extracellular traps (EETs). Taken together, our study suggested the roles of MnBP exposure increase the risk of asthma development and severity. Furthermore, vitamin E treatment (anti-inflammatory and antioxidant effects) can reduce MnBP-induced harmful effects through inhibiting EETs, restoring Nrf2, and suppressing the NF-kB pathway.

    Topics: Animals; Asthma; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Eosinophils; Humans; Lung; Mice; Mice, Inbred BALB C; NF-E2-Related Factor 2; NF-kappa B; Ovalbumin; Phthalic Acids

2022