ovalbumin has been researched along with liproxstatin-1* in 1 studies
1 other study(ies) available for ovalbumin and liproxstatin-1
Article | Year |
---|---|
Liproxstatin-1 alleviates LPS/IL-13-induced bronchial epithelial cell injury and neutrophilic asthma in mice by inhibiting ferroptosis.
Ferroptosis is closely associated with respiratory diseases; however, the relationship between ferroptosis and neutrophilic asthma remains unknown. This study investigated whether Liproxstatin-1 (Lip-1) affects the progression of neutrophilic asthma by inhibiting ferroptosis and inflammatory response, while dissecting the underlying molecular mechanisms.. The bronchial epithelial cells (16HBE and BEAS-2B) were administered with lipopolysaccharide (LPS) and interleukin-13 (IL-13) to generate a cell injury model. This cell model was employed to examine the effect of Lip-1 on airway epithelial-associated inflammation and ferroptosis as well as the underlying molecular mechanism. Meanwhile, we evaluated the effects of Lip-1 on neutrophilic asthma and ferroptosis by using the ovalbumin (OVA)/LPS-induced mouse model.. Lip-1 reversed the altered expression of ferroptotic regulators (glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11) and prostaglandin-endoperoxide synthase 2 (PTGS2)), attenuated lipid reactive oxygen species (lipid ROS) and ameliorated cell viability in HBE and BEAS-2B cells administered with LPS and IL-13. Moreover, Lip-1 treatment led to a marked reduction in the expression of IL-33, TSLP, IL-8, IL-6, and HMGB1 in the HBE and BEAS-2B cells. In the meantime, administration with Lip-1 markedly relieved OVA/LPS-induced neutrophilic asthma, as indicated by significant improvement in lung pathological changes, airway mucus secretion, inflammation, and ferroptosis.. This study provides data suggesting that Lip-1 alleviates neutrophilic asthma in vivo and in vitro through inhibiting ferroptosis, perhaps providing a new strategy for neutrophilic asthma treatment. Topics: Animals; Asthma; Epithelial Cells; Ferroptosis; Inflammation; Interleukin-13; Lipopolysaccharides; Mice; Ovalbumin; Quinoxalines; Spiro Compounds | 2022 |