ovalbumin has been researched along with geraniol* in 2 studies
2 other study(ies) available for ovalbumin and geraniol
Article | Year |
---|---|
Geraniol suppresses proinflammatory mediators in phorbol 12-myristate 13-acetate with A23187-induced HMC-1 cells.
Geraniol is a monoterpene alcohol that has anti-fungal, anti-cancer and anti-nociceptive properties, but its anti-allergic rhinitis (AR) property is unclear.. In this study, the anti-inflammatory role and its possible mechanisms of geraniol in human mast cell line (HMC-1) cells stimulated by inflammatory trigger phorbol 12-myristate 13-acetate plus A23187 (PMACI), as well as in ovalbumin (OVA)-induced AR mice models were investigated.. PMACI results in a significant increase in the production of proinflammatory cytokines, such as TNF-α, IL-1β, MCP-1, IL-6 and as well as histamine. Geraniol was found to inhibit both TNF-α, IL-1β and IL-6 protein and mRNA expressions at concentrations of 40, 80, 160 μM. In OVA-induced AR models, geraniol treatment was able to suppress AR biomarkers (OVA-specific IgE and IL-1β as well as histamine) and nasal rub scores. Interestingly, p38, a member of the mitogen-activated protein kinase (MAPK) signaling family, was found to be increasingly hypophosphorylated as geraniol dose was increased. Similar decreases in the nuclear level of p65, a member of the nuclear factor kappa B (NF-κB) signaling pathway, were also observed.. Our data highlights that the anti-inflammatory properties of geraniol on AR-related markers in activated HCM-1 cells and OVA-induced AR models may be mediated through the regulation of the MAPK/NF-κB signaling pathway. Topics: Acyclic Monoterpenes; Animals; Anti-Allergic Agents; Anti-Inflammatory Agents, Non-Steroidal; Calcimycin; Cell Line; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Histamine; Humans; Inflammation Mediators; Mice; Mice, Inbred BALB C; Molecular Structure; Ovalbumin; Rhinitis, Allergic; Structure-Activity Relationship; Terpenes; Tetradecanoylphorbol Acetate | 2018 |
Effect of treatment with geraniol on ovalbumin-induced allergic asthma in mice.
Asthma, a complex highly prevalent airway disease, is a major public health problem for which current treatment options are inadequate.. To evaluate the antiasthma activity of geraniol and investigate its underlying molecular mechanisms.. In a standard experimental asthma model, Balb/c mice were sensitized with ovalbumin, treated with geraniol (100 or 200 mg/kg) or a vehicle control, during ovalbumin challenge.. Treatment of ovalbumin-sensitized/challenged mice with geraniol significantly decreased airway hyperresponsiveness to inhaled methacholine. Geraniol treatment reduced eotaxin levels in bronchoalveolar lavage fluid and attenuated infiltration of eosinophils induced by ovalbumin. Geraniol treatment reduced TH2 cytokines (including interleukins 4, 5, and 13), increased TH1 cytokine interferon γ in bronchoalveolar lavage fluid, and reduced ovalbumin-specific IgE in serum. In addition, treatment of ovalbumin-sensitized/challenged mice with geraniol enhanced T-bet (TH1 response) messenger RNA expression and reduced GATA-3 (TH2 response) messenger RNA expression in lungs. Furthermore, treatment of ovalbumin -sensitized/challenged mice with geraniol further enhanced Nrf2 protein expression and activated Nrf2-directed antioxidant pathways, such as glutamate-cysteine ligase, superoxide dismutase, and glutathione S-transferase, and enhanced formation of reduced glutathione and reduced formation of malondialdehyde in lungs.. Geraniol attenuated important features of allergic asthma in mice, possibly through the modulation of TH1/TH2 balance and activation the of Nrf2/antioxidant response element pathway. Topics: Acyclic Monoterpenes; Allergens; Animals; Anti-Asthmatic Agents; Asthma; Bronchoalveolar Lavage Fluid; CD4-Positive T-Lymphocytes; Cytokines; Female; GATA3 Transcription Factor; Glutamate-Cysteine Ligase; Glutathione; Glutathione Transferase; Immunoglobulin E; Leukocyte Count; Lung; Malondialdehyde; Mice, Inbred BALB C; NF-E2-Related Factor 2; Ovalbumin; RNA, Messenger; Superoxide Dismutase; T-Box Domain Proteins; Terpenes | 2016 |