ovalbumin has been researched along with galangin* in 2 studies
2 other study(ies) available for ovalbumin and galangin
Article | Year |
---|---|
Mechanistic investigation of PPARγ-facilitated anti-asthmatic effects of Galangin (Norizalpinin): Insights from in silico and in vivo analyses.
Peroxisome proliferator-activated receptor gamma (PPARγ) is a multifaceted ligand-activated transcription factor that regulates inflammatory responses in asthma pathophysiology. The present study corroborates PPARγ-mediated anti-asthmatic action of the flavonoid, galangin (norizalpinin). In silico molecular interactions reveal that galangin formed three H-bonds (Glu291, Leu340 and Ser342) and a π-sigma bond (Arg288) with PPARγ, contributing to the binding affinity and stability of the complex. In vivo studies explore the role of galangin as a propitious PPARγ agonist in mitigating airway inflammation, thereby excluding ligand-independent action of PPARγ. Accordingly, oral administration of galangin significantly ameliorated airway hyperresponsiveness, inflammation and goblet cell hyperplasia by the suppression of IL-4, 5, 13, 17, TNF-α, NO, ROS, EPO, IgE and increase of IFN-γ in ovalbumin-induced allergic asthma model. PPARγ expression (mRNA and protein) studies were performed to elucidate a possible mechanism by which galangin modulates. Furthermore, to eliminate PPARγ-independent effects of galangin, a specific PPARγ antagonist (GW9662) was administered, which dramatically reversed the effects of galangin on PPARγ up-regulation, confirming the pleiotropic role of galangin as a PPARγ agonist in asthma therapeutics. Taken together, our findings communicate that PPARγ plays as a master regulator in the anti-asthmatic action of galangin. Topics: Amino Acid Sequence; Anilides; Animals; Anti-Asthmatic Agents; Asthma; Binding Sites; Biomechanical Phenomena; Female; Flavonoids; Gene Expression Regulation; Humans; Hydrogen Bonding; Interleukins; Lung; Mice, Inbred BALB C; Molecular Docking Simulation; Ovalbumin; PPAR gamma; Protein Binding; Protein Conformation; RNA, Messenger; Signal Transduction; Tumor Necrosis Factor-alpha | 2020 |
Galangin attenuates airway remodelling by inhibiting TGF-β1-mediated ROS generation and MAPK/Akt phosphorylation in asthma.
Galangin, a natural flavonol, has attracted much attention for its potential anti-inflammatory properties. However, its role in the regulation of airway remodelling in asthma has not been explored. The present study aimed to elucidate the effects of galangin on chronic inflammation and airway remodelling and to investigate the underlying mechanisms both in vivo and in vitro. Ovalbumin (OVA)-sensitised mice were administered with galangin 30 min before challenge. Our results showed that severe inflammatory responses and airway remodelling occurred in OVA-induced mice. Treatment with galangin markedly attenuated the leakage of inflammatory cells into bronchoalveolar lavage fluid (BALF) and decreased the level of OVA-specific IgE in serum. Galangin significantly inhibited goblet cell hyperplasia, collagen deposition and α-SMA expression. Lowered level of TGF-β1 and suppressed expression of VEGF and MMP-9 were observed in BALF or lung tissue, implying that galangin has an optimal anti-remodelling effect in vivo. Consistently, the TGF-β1-induced proliferation of airway smooth muscle cells was reduced by galangin in vitro, which might be due to the alleviation of ROS levels and inhibition of MAPK pathway. Taken together, the present findings highlight a novel role for galangin as a promising anti-remodelling agent in asthma, which likely involves the TGF-β1-ROS-MAPK pathway. Topics: Actins; Airway Remodeling; Animals; Asthma; Bronchoalveolar Lavage Fluid; Cell Proliferation; Collagen; Disease Models, Animal; Female; Fibrosis; Flavonoids; Goblet Cells; Humans; Hyperplasia; Immunoglobulin E; Matrix Metalloproteinase 9; Mice; Mitogen-Activated Protein Kinases; Myocytes, Smooth Muscle; Ovalbumin; Oxidation-Reduction; Phosphorylation; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Signal Transduction; Transforming Growth Factor beta1; Vascular Endothelial Growth Factor A | 2015 |