ovalbumin has been researched along with ciclesonide* in 2 studies
2 other study(ies) available for ovalbumin and ciclesonide
Article | Year |
---|---|
Combination therapy of tiotropium and ciclesonide attenuates airway inflammation and remodeling in a guinea pig model of chronic asthma.
The long-acting anticholinergic tiotropium has recently been registered for the treatment of asthma, and its use is associated with a reduction in exacerbation frequency. Anti-inflammatory and anti-remodeling effects of tiotropium have been demonstrated in in vitro and in vivo models. Because tiotropium treatment is used in combination with inhaled corticosteroids, potential additive effects between the two would be clinically relevant. Therefore, the aim of this study was to investigate additive effects between tiotropium and ciclesonide on airway inflammation and remodeling in guinea pig models of asthma.. Guinea pigs (nā=ā3-8/group) were sensitized and challenged with ovalbumin in an acute (single challenge) and a chronic model (12 weekly challenges) of allergic asthma. Animals were treated with vehicle, nebulized tiotropium (0.01-0.3 mM) and/or intranasally instilled ciclesonide (0.001-1 mg/kg) before each challenge. Bronchoalveolar lavage fluid and lungs were collected for analysis of airway inflammation and remodeling.. Tiotropium and ciclesonide treatment, alone or in combination, did not inhibit airway inflammation in the acute asthma model. In a dose-finding study, low doses of tiotropium and ciclesonide inhibited airway eosinophilia and airway smooth muscle thickening in the chronic asthma model. Threshold doses of 0.01 mM tiotropium (nebulizer concentration) and 0.01 mg/kg ciclesonide were selected to investigate potential additive effects between both drugs. At these doses, tiotropium and ciclesonide did not inhibit airway eosinophilia or airway smooth muscle thickening when administered alone, but significantly inhibited these allergen-induced responses when administered in combination.. Combined treatment with low doses of tiotropium and ciclesonide inhibits airway inflammation and remodeling in a guinea pig model of chronic asthma, suggesting that combined treatment with anticholinergics and corticosteroids may have anti-inflammatory and anti-remodeling activity in allergic airway diseases. Since tiotropium is registered as a therapy for asthma added on to corticosteroid treatment, these beneficial effects of the combination therapy may be clinically relevant. Topics: Administration, Inhalation; Airway Remodeling; Animals; Anti-Allergic Agents; Asthma; Bronchodilator Agents; Chronic Disease; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Guinea Pigs; Male; Ovalbumin; Pregnenediones; Tiotropium Bromide; Treatment Outcome | 2016 |
Effects of ciclesonide and fluticasone propionate on allergen-induced airway inflammation and remodeling features.
Several topical corticosteroids are available as anti-inflammatory treatment for asthma. Their comparative effects on allergic inflammation and airway remodeling are unclear.. We compared the effects of ciclesonide with those of fluticasone propionate in a Brown Norway rat model of chronic allergic asthma.. Rats sensitized and exposed to ovalbumin (OVA) were treated with dry powder vehicle, ciclesonide, or fluticasone (0.01, 0.03, and 0.1 mg/kg administered intratracheally) 24 hours and 1 hour before each of 6 OVA exposures. In a second protocol we administered 0.1 mg/kg ciclesonide or fluticasone only after the third OVA exposure.. Ciclesonide at all doses inhibited the allergen-induced increase in airway eosinophils and T cells, reduced goblet cell hyperplasia, and decreased 5-bromo-2'-deoxyuridine-immunoreactive airway smooth muscle (ASM) and epithelial cells. At 0.03 and 0.1 mg/kg ciclesonide, bronchial hyperresponsiveness (BHR) was also inhibited. Fluticasone did not attenuate allergen-induced BHR, despite inhibiting airway eosinophils and T cells, goblet cell hyperplasia, and 5-bromo-2'-deoxyuridine-immunoreactive ASM and epithelial cells. Fluticasone (0.1 mg/kg) caused a significant reduction in body weight (9%) compared with ciclesonide (0.1 mg/kg). Ciclesonide did not change plasma corticosterone levels, whereas fluticasone (0.1 mg/kg) reduced them. In the second protocol both fluticasone and ciclesonide inhibited BHR, bronchial inflammation, goblet cell hyperplasia, and ASM proliferation.. Ciclesonide potently inhibited chronic allergic inflammation, remodeling, and BHR without having an effect on body weight and the hypothalamic-pituitary-adrenal axis. Fluticasone prevented airway inflammation but not BHR, but both fluticasone and ciclesonide are effective at reversal of BHR, inflammation, and remodeling features. Topics: Administration, Inhalation; Allergens; Androstadienes; Animals; Anti-Allergic Agents; Body Weight; Corticosterone; Dose-Response Relationship, Drug; Eosinophils; Epithelial Cells; Fluticasone; Male; Muscle, Smooth; Ovalbumin; Pregnenediones; Rats; Rats, Inbred BN; Respiratory Hypersensitivity; Respiratory System; T-Lymphocytes | 2005 |