ouabagenin and dihydroouabain

ouabagenin has been researched along with dihydroouabain* in 2 studies

Other Studies

2 other study(ies) available for ouabagenin and dihydroouabain

ArticleYear
Ouabain increases sarcoplasmic reticulum calcium release in cardiac myocytes.
    The Journal of pharmacology and experimental therapeutics, 2004, Volume: 308, Issue:3

    The inotropic and toxic effects of cardiac glycosides are thought to be related to their ability to inhibit the Na,K-ATPase. We examined the effects of ouabain and its analogs on sarcoplasmic reticulum (SR) Ca(2+) release in intact cat ventricular myocytes under Na(+)-free conditions and in myocytes in which the sarcolemma was permeabilized using saponin so that cytoplasmic ionic composition was fixed by the bath solutions. We also compared ouabain actions in cat myocytes to those in rat myocytes because the latter is considered to be a glycoside-insensitive species. In intact cat myocytes (Na(+)-free conditions), spontaneous Ca(2+) sparks were prolonged and frequency, amplitude and width were reduced by exposure to ouabain (3 microM). Nearly identical results were obtained with its analogs dihydroouabain or ouabagenin (10 microM). The frequency of spontaneous Ca(2+) waves was also reduced by ouabain. In contrast, ouabain (100 microM) had negligible effects on sparks and waves in rat myocytes in Na(+)-free conditions, consistent with the decreased sensitivity to cardiac glycosides observed in this species. In cat myocytes permeabilized with saponin (0.01%), ouabain (>or=50 nM) decreased spark frequency and increased background SR Ca(2+) leak only when the SR was well loaded (free [Ca(2+)] = 275 nM) and not when SR load was low (free [Ca(2+)] = 50 nM). Similar effects were observed in rat myocytes only when ouabain concentration was 1 microM. These results suggest that the cellular actions of cardiac glycosides may include a direct effect on SR Ca(2+) release, possibly through activation of SR Ca(2+) release channels (ryanodine receptors). In addition, these results are consistent with the idea that direct activation of SR Ca(2+) release is dependent on the extent of SR Ca(2+) load, with elevated load increasing sensitivity of the channel release mechanism to activation by glycoside.

    Topics: Animals; Calcium; Calcium Channels; Cats; Cells, Cultured; Glycosides; Heart; Myocytes, Cardiac; Ouabain; Rats; Sarcoplasmic Reticulum; Sodium

2004
Effect of cardiac glycosides on action potential characteristics and contractility in cat ventricular myocytes: role of calcium overload.
    The Journal of pharmacology and experimental therapeutics, 2003, Volume: 307, Issue:1

    There is increasing evidence that cardiac glycosides act through mechanisms distinct from inhibition of the sodium pump but which may contribute to their cardiac actions. To more fully define differences between agents indicative of multiple sites of action, we studied changes in contractility and action potential (AP) configuration in cat ventricular myocytes produced by six cardiac glycosides (ouabain, ouabagenin, dihydroouabain, actodigin, digoxin, and resibufogenin). AP shortening was observed only with ouabain and actodigin. There was extensive inotropic variability between agents, with some giving full inotropic effects before automaticity occurred whereas others produced minimal inotropy before toxicity. AP shortening was not a result of alterations in calcium current or the inward rectifier potassium current, but correlated with an increase in steady-state outward current (Iss), which was sensitive to KB-R7943, a Na+-Ca2+ exchange (NCX) inhibitor. Interestingly, Iss was observed following exposure to ouabain and dihydroouabain, suggesting that an additional mechanism is operative with dihydroouabain that prevents AP shortening. Further investigation into differences in inotropy between ouabagenin, dihydroouabain and ouabain revealed almost identical responses under AP voltage clamp. Thus all agents appear to act on the sodium pump and thereby secondarily increase the outward reverse mode NCX current, but the extent of AP duration shortening and positive inotropy elicited by each agent is limited by development of their toxic actions. The quantitative differences between cardiac glycosides suggest that mechanisms independent of sodium pump inhibition may result from an altered threshold for calcium overload possibly involving direct or indirect effects on calcium release from the sarcoplasmic reticulum.

    Topics: Action Potentials; Animals; Calcium; Cardiac Glycosides; Cardiotonic Agents; Cats; Drug Interactions; Electrophysiology; Heart Ventricles; Muscle Cells; Muscle Contraction; Ouabain

2003