osu-6162 has been researched along with preclamol* in 2 studies
1 review(s) available for osu-6162 and preclamol
Article | Year |
---|---|
Schizophrenia: from dopamine to glutamate and back.
The first part of the present review describes the exciting journey of dopamine stabilizers, starting in the early eighties with the development of the partial dopamine agonist (-)-3-PPP of phenylpiperidine structure, via various compounds with aminotetraline structure with preferential autoreceptor antagonist properties, and then back again to phenylpiperidine compounds carrying substituents on the aromatic ring that transformed them from partial dopamine agonists to partial dopamine receptor antagonists, such as OSU6162. OSU6162 was brought to the clinic and has in preliminary trials showed antidyskinetic and antipsychotic efficacy. The second part of this review describes results from a hypoglutamatergia mouse model for cognitive symptoms of schizophrenia, where we have tested traditional neuroleptics, new generation antipsychotics with marked 5-HT2 vs dopamine D2 receptor blockade as well as a dopamine stabilizer belonging to the partial dopamine receptor antagonist category. Topics: Animals; Antipsychotic Agents; Aripiprazole; Disease Models, Animal; Dopamine; Dopamine Agonists; Dopamine Antagonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Mice; Piperazines; Piperidines; Quinolones; Schizophrenia | 2004 |
1 other study(ies) available for osu-6162 and preclamol
Article | Year |
---|---|
Effects of the dopamine stabilizers (S)-(-)-OSU6162 and ACR16 on prolactin secretion in drug-naive and monoamine-depleted rats.
Dopaminergic stabilizers may be conceptualized as drugs with normalizing effects on dopamine-mediated behaviours and neurochemical events. (S)-(-)-OSU6162 (OSU6162) and ACR16 are two structurally related compounds ascribed such properties, principally because of their stabilizing effects on motor activity in rodents. Reports in the literature indicate possible partial D2 receptor agonist effects using various in vitro systems. This study aimed to measure D2 receptor antagonist and agonist effects of OSU6162 and ACR16 in vivo. To address this, we have studied the effects of both compounds on prolactin secretion in drug-naive and dopamine-depleted rats; dopamine depletion was induced by pretreatment with reserpine plus α-methyl-DL: -p-tyrosine. We find that OSU6162 and ACR16 both stimulate prolactin secretion in drug-naive rats with OSU6162 being considerably more potent and efficacious. Both compounds show a non-significant trend towards reversal of the increased secretion caused by dopamine depletion, whereas the D2 receptor antagonist haloperidol further increased prolactin secretion. Thus, this study suggests that OSU6162 and ACR16 act as D2 receptor antagonists under normal conditions in vivo, possibly with minor agonist effects in a state of dopamine depletion. Topics: Animals; Aripiprazole; Dopamine; Dopamine Agonists; Dopamine Antagonists; Dopamine D2 Receptor Antagonists; Haloperidol; Hyperprolactinemia; Lactotrophs; Male; Methyltyrosines; Piperazines; Piperidines; Prolactin; Quinolones; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; Reserpine | 2011 |