oryzalin has been researched along with paclitaxel in 35 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (2.86) | 18.7374 |
1990's | 9 (25.71) | 18.2507 |
2000's | 17 (48.57) | 29.6817 |
2010's | 8 (22.86) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Henriquez, FL; Ingram, PR; Muench, SP; Rice, DW; Roberts, CW | 1 |
Gaertig, J; Gorovsky, MA; Heruth, DP; Stargell, LA | 1 |
James, SW; Lefebvre, PA; Ranum, LP; Silflow, CD; Thompson, MD | 1 |
Gaertig, J; Gorovsky, MA; Gu, L; Stargell, LA | 1 |
James, SW; Lefebvre, PA; Silflow, CD; Stroom, P | 1 |
Baskin, TI; Cork, A; Williamson, RE; Wilson, JE | 1 |
Graziana, A; Mazars, C; Moreau, M; Ranjeva, R; Rossignol, M; Thion, L; Thuleau, P | 1 |
Bibikova, TN; Blancaflor, EB; Gilroy, S | 1 |
Compton, HL; Roos, DS; Shaw, MK; Tilney, LG | 1 |
Chua, NH; Mathur, J | 1 |
Godbole, R; Nick, P; Wang, QY | 1 |
Baluska, F; Barlow, PW; Hauskrecht, M; Sievers, A | 1 |
Blancaflor, EB; Hasenstein, KH; Lee, JS | 1 |
Doonan, J; Hemsley, R; Lloyd, C; McCutcheon, S | 1 |
Huang, RF; Wang, XC; Yu, R; Yuan, M | 1 |
Hasenstein, KH; Zhang, N | 1 |
Hülskamp, M; Mathur, J; Mathur, N | 1 |
Emons, AM; Lhuissier, FG; Sieberer, BJ; Timmers, AC | 1 |
Stoeckel, H; Takeda, K | 1 |
Hayakawa, E; Hirota, K; Inoue, Y; Kawahara, A; Takahashi, H | 1 |
Himmelspach, R; Sugimoto, K; Wasteneys, GO; Williamson, RE | 1 |
Allen, NS; Collings, DA; Johannes, E; Weerasinghe, RR | 1 |
Emons, AM; Sieberer, BJ; Timmers, AC | 1 |
Collings, DA; Himmelspach, R; Lill, AW; Wasteneys, GO | 1 |
Bannigan, A; Baskin, TI; Overall, RL; Wiedemeier, AM; Williamson, RE | 1 |
Kropf, DL; Peters, NT | 1 |
Gong, Z; Liang, J; Lü, B; Wang, J; Zhang, J | 1 |
Briggs, W; Ehrhardt, D; Eisinger, W | 1 |
Arimura, S; Chen, T; Lin, J; Liu, P; Tsutsumi, N; Wang, F; Zhang, Q; Zhu, J | 1 |
Era, A; Hasezawa, S; Higaki, T; Kutsuna, N; Nakano, A; Ueda, T | 1 |
Gu, Z; Li, T; Li, W; Meng, D; Wang, A; Yang, Q; Yuan, H; Zhu, Y | 1 |
Lipka, E; Müller, S | 1 |
Guo, J; Jia, Q; Qu, Y; Song, P; Wang, P; Wang, Q; Zhang, Q | 1 |
Adamakis, IS; Arseni, EM; Eleftheriou, EP; Panteris, E; Stavropoulou, K | 1 |
Caccianiga, M; Morandini, P; Moscatelli, A; Onelli, E; Pavesi, G; Scali, M; Stroppa, N | 1 |
35 other study(ies) available for oryzalin and paclitaxel
Article | Year |
---|---|
Molecular basis for resistance of acanthamoeba tubulins to all major classes of antitubulin compounds.
Topics: Acanthamoeba; Acanthamoeba castellanii; Albendazole; Animals; Binding Sites; Colchicine; Dinitrobenzenes; Drug Resistance; Models, Molecular; Paclitaxel; Parasitic Sensitivity Tests; Sulfanilamides; Tubulin; Tubulin Modulators; Vinblastine | 2008 |
Drugs affecting microtubule dynamics increase alpha-tubulin mRNA accumulation via transcription in Tetrahymena thermophila.
Topics: Alkaloids; Animals; Colchicine; Cytochalasin B; Dinitrobenzenes; Dose-Response Relationship, Drug; Food Deprivation; Immunohistochemistry; Microtubules; Paclitaxel; RNA, Messenger; Sulfanilamides; Tetrahymena thermophila; Transcription, Genetic; Tubulin; Verapamil | 1992 |
Extragenic suppression and synthetic lethality among Chlamydomonas reinhardtii mutants resistant to anti-microtubule drugs.
Topics: Alkaloids; Chlamydomonas; Chromosome Mapping; Colchicine; Dinitrobenzenes; Drug Resistance, Microbial; Flagella; Genes, Lethal; Genes, Recessive; Genetic Linkage; Microtubules; Mutation; Paclitaxel; Sulfanilamides; Suppression, Genetic | 1989 |
Gene-specific signal transduction between microtubules and tubulin genes in Tetrahymena thermophila.
Topics: Animals; Cilia; Dinitrobenzenes; Dose-Response Relationship, Drug; Gene Expression Regulation; Genes, Protozoan; Microtubules; Paclitaxel; RNA, Messenger; Signal Transduction; Sulfanilamides; Tetrahymena thermophila; Transcription, Genetic; Tubulin | 1995 |
A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides.
Topics: Acetylation; Alleles; Animals; Chlamydomonas reinhardtii; Dinitrobenzenes; DNA Mutational Analysis; Drug Resistance; Genes, Plant; Genes, Protozoan; Microtubules; Nitrobenzenes; Organothiophosphorus Compounds; Paclitaxel; Plant Proteins; Protein Processing, Post-Translational; Protozoan Proteins; Sulfanilamides; Tubulin | 1993 |
Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol.
Topics: Arabidopsis; Dinitrobenzenes; Herbicides; Microscopy, Fluorescence; Microtubules; Paclitaxel; Sulfanilamides | 1994 |
Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells.
Topics: Calcium Channels; Calcium Chloride; Cell Membrane; Colchicine; Daucus carota; Dinitrobenzenes; Microtubules; Paclitaxel; Patch-Clamp Techniques; Protoplasts; Sulfanilamides | 1996 |
Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana.
Topics: Arabidopsis; Calcium; Cell Polarity; Cytoskeleton; Dinitrobenzenes; Microtubules; Paclitaxel; Plant Roots; Sulfanilamides | 1999 |
Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii.
Topics: Actins; Animals; Bridged Bicyclo Compounds, Heterocyclic; Calcimycin; Cell Division; Cells, Cultured; Cytochalasin D; Cytoskeleton; Dinitrobenzenes; Fibroblasts; Growth Inhibitors; Humans; Ionophores; Microscopy, Electron; Microtubules; Nocodazole; Organelles; Paclitaxel; Sulfanilamides; Thiazoles; Thiazolidines; Toxoplasma | 2000 |
Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes.
Topics: Actins; Arabidopsis; Arabidopsis Proteins; Benzamides; Biopolymers; Bridged Bicyclo Compounds, Heterocyclic; Calmodulin-Binding Proteins; Cell Division; Cell Size; Dinitrobenzenes; Genes, Plant; Microscopy, Confocal; Microscopy, Electron, Scanning; Microtubule-Associated Proteins; Microtubules; Multiprotein Complexes; Mutation; Paclitaxel; Phenotype; Plant Proteins; Plants, Genetically Modified; Recombinant Fusion Proteins; Sulfanilamides; Thiazoles; Thiazolidines | 2000 |
Probing rice gravitropism with cytoskeletal drugs and cytoskeletal mutants.
Topics: Actin Cytoskeleton; Actins; Carbamates; Cell Polarity; Colchicine; Cotyledon; Cytochalasin D; Cytoskeleton; Dinitrobenzenes; Gravitropism; Gravity Sensing; Herbicides; Microtubules; Mutation; Nucleic Acid Synthesis Inhibitors; Oryza; Paclitaxel; Phenylcarbamates; Plastids; Sulfanilamides; Tubulin; Urethane | 1997 |
Gravitropism of the primary root of maize: a complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton.
Topics: Cell Size; Colchicine; Dinitrobenzenes; Gravitation; Gravitropism; Herbicides; Microtubules; Paclitaxel; Plant Roots; Sulfanilamides; Zea mays | 1996 |
The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots.
Topics: Biological Transport; Cytoskeleton; Dinitrobenzenes; Gravitropism; Herbicides; Indoleacetic Acids; Microtubules; Paclitaxel; Phthalimides; Plant Growth Regulators; Plant Roots; Sulfanilamides; Zea mays | 1999 |
P34(cdc2) kinase is associated with cortical microtubules from higher plant protoplasts.
Topics: Animals; Antineoplastic Agents, Phytogenic; Arabidopsis; CDC2 Protein Kinase; Cell Membrane; Daucus carota; Dinitrobenzenes; Herbicides; Immunohistochemistry; Microtubules; Nicotiana; Paclitaxel; Peptide Fragments; Plant Cells; Plant Proteins; Plants; Protoplasts; Sulfanilamides | 2001 |
Microtubule dynamics are involved in stomatal movement of Vicia faba L.
Topics: Cell Polarity; Dinitrobenzenes; Fabaceae; Herbicides; Light; Microinjections; Microtubules; Movement; Paclitaxel; Plant Epidermis; Plant Leaves; Sulfanilamides; Tubulin | 2001 |
Halogenated auxins affect microtubules and root elongation in Lactuca sativa.
Topics: Biological Transport; Dinitrobenzenes; Dose-Response Relationship, Drug; Herbicides; Hydrocarbons, Halogenated; Indoleacetic Acids; Indoles; Lactuca; Microscopy, Confocal; Microtubules; Paclitaxel; Phthalimides; Plant Growth Regulators; Plant Roots; Sulfanilamides; Time Factors | 2000 |
Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants.
Topics: Actins; Arabidopsis; Bacterial Proteins; Benzamides; Biological Transport; Cytoskeleton; Dinitrobenzenes; Gene Expression; Luminescent Proteins; Microscopy, Confocal; Microtubules; Onions; Paclitaxel; Peroxisomes; Plant Epidermis; Plant Roots; Plants, Genetically Modified; Recombinant Fusion Proteins; Signal Transduction; Sulfanilamides; Transfection | 2002 |
Endoplasmic microtubules configure the subapical cytoplasm and are required for fast growth of Medicago truncatula root hairs.
Topics: Carrier Proteins; Cell Division; Cell Polarity; Cell Surface Extensions; Cytoplasm; Dinitrobenzenes; Endoplasmic Reticulum; Green Fluorescent Proteins; Immunohistochemistry; Luminescent Proteins; Medicago; Microtubules; Paclitaxel; Plant Roots; Sulfanilamides | 2002 |
Plasmalemmal voltage-activated K(+) currents in protoplasts from tobacco BY-2 cells: possible regulation by actin microfilaments?
Topics: Actin Cytoskeleton; Bridged Bicyclo Compounds, Heterocyclic; Cations, Monovalent; Cell Membrane; Cells, Cultured; Cytochalasin B; Dinitrobenzenes; Membrane Potentials; Nicotiana; Paclitaxel; Potassium; Potassium Channel Blockers; Potassium Channels, Voltage-Gated; Protoplasts; Rhodamines; Sulfanilamides; Thiazoles; Thiazolidines | 2002 |
Randomization of cortical microtubules in root epidermal cells induces root hair initiation in lettuce (Lactuca sativa L.) seedlings.
Topics: Bridged Bicyclo Compounds, Heterocyclic; Cytochalasin B; Dinitrobenzenes; Lactuca; Microtubules; Paclitaxel; Plant Epidermis; Plant Roots; Sulfanilamides; Thiazoles; Thiazolidines | 2003 |
Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells.
Topics: Arabidopsis; Cell Division; Cellulose; Dinitrobenzenes; Microtubules; Mutation; Paclitaxel; Phenotype; Plant Epidermis; Plant Roots; Sulfanilamides; Temperature | 2003 |
The distributional changes and role of microtubules in Nod factor-challenged Medicago sativa root hairs.
Topics: Cell Polarity; Cell Surface Extensions; Dinitrobenzenes; Lipopolysaccharides; Medicago sativa; Microscopy, Confocal; Microtubules; Paclitaxel; Plant Roots; Signal Transduction; Sulfanilamides; Time Factors | 2003 |
Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hairs to allow root hair reorientation.
Topics: Cytoskeleton; Dinitrobenzenes; Lipopolysaccharides; Medicago truncatula; Microtubules; Paclitaxel; Plant Roots; Rhizobium; Signal Transduction; Sulfanilamides; Symbiosis; Tubulin Modulators | 2005 |
Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana.
Topics: Actin Cytoskeleton; Actins; Arabidopsis; Arabidopsis Proteins; Bridged Bicyclo Compounds, Heterocyclic; Cytochalasin D; Dinitrobenzenes; Microtubule-Associated Proteins; Microtubules; Mutation; Paclitaxel; Plant Roots; Sulfanilamides; Thiazoles; Thiazolidines; Tubulin Modulators | 2006 |
Cortical microtubule arrays lose uniform alignment between cells and are oryzalin resistant in the Arabidopsis mutant, radially swollen 6.
Topics: Actins; Anisotropy; Antineoplastic Agents, Phytogenic; Arabidopsis; Arabidopsis Proteins; Cell Line; Dinitrobenzenes; Drug Resistance; Genes, Plant; Microtubules; Mutation; Paclitaxel; Phenotype; Plant Roots; Plants, Genetically Modified; Sulfanilamides; Tubulin Modulators | 2006 |
Kinesin-5 motors are required for organization of spindle microtubules in Silvetia compressa zygotes.
Topics: Cell Polarity; Cysteine; Cytokinesis; Dinitrobenzenes; Kinesins; Microtubules; Mitosis; Molecular Motor Proteins; Paclitaxel; Phaeophyceae; Pyrimidines; Spindle Apparatus; Sulfanilamides; Thiones; Zygote | 2006 |
Microtubule dynamics in relation to osmotic stress-induced ABA accumulation in Zea mays roots.
Topics: Abscisic Acid; Dinitrobenzenes; Microtubules; Osmotic Pressure; Paclitaxel; Plant Roots; Polyethylene Glycols; Sulfanilamides; Tubulin; Tubulin Modulators; Zea mays | 2007 |
Microtubules are essential for guard-cell function in Vicia and Arabidopsis.
Topics: Abscisic Acid; Arabidopsis; Darkness; Dinitrobenzenes; Fluorescence; Green Fluorescent Proteins; Microtubules; Paclitaxel; Plant Stomata; Plant Transpiration; Plants, Genetically Modified; Recombinant Fusion Proteins; Seedlings; Sulfanilamides; Tubulin; Vicia | 2012 |
Phosphorylation and ubiquitination of dynamin-related proteins (AtDRP3A/3B) synergically regulate mitochondrial proliferation during mitosis.
Topics: Arabidopsis; Arabidopsis Proteins; Cell Cycle; Cells, Cultured; Cyclin B; Dinitrobenzenes; Mitochondria; Mitochondrial Dynamics; Mitochondrial Proteins; Mitosis; Models, Molecular; Nicotiana; Paclitaxel; Phosphorylation; Protein Serine-Threonine Kinases; Recombinant Fusion Proteins; Sulfanilamides; Time-Lapse Imaging; Transgenes; Tubulin Modulators; Ubiquitination | 2012 |
Microtubule stability affects the unique motility of F-actin in Marchantia polymorpha.
Topics: Actin Cytoskeleton; Actins; Biological Transport; Dinitrobenzenes; Marchantia; Microtubules; Paclitaxel; Sulfanilamides; Tubulin Modulators | 2013 |
The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple.
Topics: Blotting, Western; Bridged Bicyclo Compounds, Heterocyclic; Cells, Cultured; Cytoplasm; Cytoplasmic Vesicles; Cytoskeleton; Dinitrobenzenes; Endocytosis; Golgi Apparatus; Malus; Microscopy, Confocal; Microtubules; Paclitaxel; Pollen; Pollen Tube; Ribonucleases; Self-Incompatibility in Flowering Plants; Sulfanilamides; Thiazolidines | 2014 |
Nitrosative stress triggers microtubule reorganization in Arabidopsis thaliana.
Topics: Arabidopsis; Dinitrobenzenes; Microtubules; Mitosis; Nitric Oxide; Paclitaxel; Plant Roots; Stress, Physiological; Sulfanilamides; Tyrosine | 2014 |
Arabidopsis phospholipase D alpha 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment.
Topics: Arabidopsis; Arabidopsis Proteins; Dinitrobenzenes; Gene Knockout Techniques; Microtubules; Mutation; Paclitaxel; Phosphatidic Acids; Phospholipase D; Plant Roots; Seedlings; Sulfanilamides | 2017 |
Disruption of actin filaments in Zea mays by bisphenol A depends on their crosstalk with microtubules.
Topics: Actin Cytoskeleton; Actins; Benzhydryl Compounds; Dinitrobenzenes; Meristem; Microtubules; Mitosis; Paclitaxel; Phenols; Plant Leaves; Sulfanilamides; Zea mays | 2018 |
Microtubules play a role in trafficking prevacuolar compartments to vacuoles in tobacco pollen tubes.
Topics: Cell Membrane; Dinitrobenzenes; Endocytosis; Endosomes; Golgi Apparatus; Microtubules; Nicotiana; Nocodazole; Paclitaxel; Pollen Tube; Sulfanilamides; Vacuoles; Wortmannin | 2018 |