orteronel has been researched along with abiraterone* in 5 studies
2 review(s) available for orteronel and abiraterone
Article | Year |
---|---|
The hunt for a selective 17,20 lyase inhibitor; learning lessons from nature.
Given prostate cancer is driven, in part, by its responsiveness to androgens, treatments historically employ methods for their removal from circulation. Approaches as crude as castration, and more recently blockade of androgen synthesis or receptor binding, are still of limited use long term, since other steroids of adrenal origin or tumor origin can supersede that role as the 'castration resistant' tumor re-emerges. Broader inhibition of steroidogenesis using relatively nonselective P450 inhibitors such as ketoconazole is not an alternative since a general disruption of steroid biosynthesis is neither safe nor effective. The recent emergence of drugs more selectively targeting CYP17 have been more effective, and yet extension of life has been on the scale of months rather than years. It is now becoming clear this shortcoming arises from the adaptive capabilities of many tumors to initiate local steroid synthesis and/or become responsive to novel early pathway adrenal steroids that are synthesized when lyase activity is not selectively blocked, and ACTH rises in the face of declining cortisol feedback. Abiraterone has been described as a lyase selective inhibitor, yet its use still requires co-administration of prednisone to suppress such a rise of ACTH and fall in cortisol. So is creation of a selective lyase inhibitor even possible? Can C19 steroid production be achieved without a prominent decline in cortisol and corresponding rise in ACTH? Decades of scientific study of CYP17 in humans and nonhuman primates, as well as nature's own experiments of gene mutations in humans, reveal 'true' or 'isolated' 17,20 lyase deficiency does quite selectively prevent C19 steroid biosynthesis whereas simple 17 hydroxylase deficiency also suppresses cortisol. We propose these known outcomes of natural mutations should be used to guide analysis of clinical trials and long term outcomes of CYP17 targeted drugs. In this review, we use that framework to re-evaluate the basic and clinical outcomes of many compounds being used or in development for treatment of castration resistant prostate cancer. Specifically, we include the nonselective drug ketoconazole, and then the CYP17 targeted drugs abiraterone, orteronel (TAK-700), galaterone (TOK-001), and seviteronel (VT-464). Using this framework, we can fully discriminate the clinical outcomes for ketoconazole, a drug with broad specificity, yet clinically ineffective, from that of abiraterone, the first CYP17 targeted therapy Topics: Adrenal Hyperplasia, Congenital; Androstadienes; Androstenes; Antineoplastic Agents; Benzimidazoles; Cytochrome P-450 CYP3A Inhibitors; Drug Therapy, Combination; Humans; Hydrocortisone; Imidazoles; Ketoconazole; Male; Naphthalenes; Prednisone; Prostate; Prostatic Neoplasms; Protective Factors; Steroid 17-alpha-Hydroxylase; Triazoles | 2016 |
[Pathophysiology and therapy of castration-resistant prostate cancer].
Advanced prostate cancer that progresses under androgen deprivation therapy has long been thought to be refractory to further hormonal treatment. The identification of the mechanism of cancer cells has revolutionized this understanding. Today it is known that castration-resistant prostate cancer (CRPC) still receives signals through the androgen receptor transduction pathways and furthermore is sensitive to hormone therapy. New substances, such as abiraterone, enzalutamide (MDV3100) and TAK 700 target these mechanisms of resistance of cancer cells, stop testosterone production and show not only better tolerance but also effective antitumor activity. Due to the heterogeneity of tumors with cells in varying states of differentiation, the treatment of CRPC with androgen deprivation therapy remains a cornerstone of disease management. To what extent the experimental findings and the recommendations in the guidelines are put into practice was the subject of a survey among urologists analyzing their treatment strategies with CRPC patients. Topics: Androgen Antagonists; Androstenes; Androstenols; Antineoplastic Agents, Hormonal; Benzamides; Biomarkers, Tumor; Disease Progression; Drug Resistance, Neoplasm; Humans; Imidazoles; Male; Naphthalenes; Nitriles; Orchiectomy; Phenylthiohydantoin; Prostate; Prostate-Specific Antigen; Prostatic Neoplasms | 2013 |
3 other study(ies) available for orteronel and abiraterone
Article | Year |
---|---|
Stepwise binding of inhibitors to human cytochrome P450 17A1 and rapid kinetics of inhibition of androgen biosynthesis.
Cytochrome P450 (P450) 17A1 catalyzes the 17α-hydroxylation of progesterone and pregnenolone as well as the subsequent lyase cleavage of both products to generate androgens. However, the selective inhibition of the lyase reactions, particularly with 17α-hydroxy pregnenolone, remains a challenge for the treatment of prostate cancer. Here, we considered the mechanisms of inhibition of drugs that have been developed to inhibit P450 17A1, including ketoconazole, seviteronel, orteronel, and abiraterone, the only approved inhibitor used for prostate cancer therapy, as well as clotrimazole, known to inhibit P450 17A1. All five compounds bound to P450 17A1 in a multistep process, as observed spectrally, over a period of 10 to 30 s. However, no lags were observed for the onset of inhibition in rapid-quench experiments with any of these five compounds. Furthermore, the addition of substrate to inhibitor-P450 17A1 complexes led to an immediate formation of product, without a lag that could be attributed to conformational changes. Although abiraterone has been previously described as showing slow-onset inhibition (t Topics: Androgens; Androstenes; Antineoplastic Agents, Hormonal; Catalytic Domain; Cytochrome P-450 CYP3A; Enzyme Inhibitors; Humans; Imidazoles; Ketoconazole; Kinetics; Male; Naphthalenes; Pregnenolone; Progesterone; Prostatic Neoplasms; Steroid 17-alpha-Hydroxylase | 2021 |
Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis.
The orteronel, abiraterone and galeterone, which were developed to treat castration resistant prostate cancer, inhibit 17,20 lyase activity but little is known about their effects on adrenal androgen biosynthesis. We studied the effect of several inhibitors and found that orteronel was selective towards 17,20 lyase activity than abiraterone and galeterone. Gene expression analysis showed that galeterone altered the expression of HSD3B2 but orteronel did not change the expression of HSD3B2, CYP17A1 and AKR1C3. The CYP19A1 activity was not inhibited except by compound IV which lowered activity by 23%. Surprisingly abiraterone caused complete blockade of CYP21A2 activity. Analysis of steroid metabolome by gas chromatography - mass spectrometry revealed changes in steroid levels caused by different inhibitors. We can conclude that orteronel is a highly specific inhibitor of 17,20 lyase activity. The discovery of these specific drug actions on steroidogenic enzyme activities would be valuable for understanding the regulation of androgens. Topics: Adrenal Glands; Androgens; Androstadienes; Androstenes; Antineoplastic Agents; Benzimidazoles; Cell Line; Dose-Response Relationship, Drug; Humans; Imidazoles; Male; Naphthalenes; Prostatic Neoplasms; Steroid 17-alpha-Hydroxylase | 2016 |
Management of castrate resistant prostate cancer-recent advances and optimal sequence of treatments.
Until 2010, chemotherapy with docetaxel was the only approved agent for treatment of metastatic castrate resistant prostate cancer (mCRPC). Since then, the therapeutic landscape of mCRPC has changed rapidly. Multiple novel agents have received regulatory approval after demonstrating improved overall survival in separate randomized Phase 3 studies. These include immunotherapeutic agent sipuleucel-T, androgen axis inhibitors abiraterone and enzalutamide, and a novel microtubule inhibitor cabazitaxel. More recently, radium-223, a bone-targeting alpha emitting radiopharmaceutical, was reported to improve skeletal related events, as well as overall survival in a Phase 3 randomized study. Additionally, there are several promising agents in the advanced stages of clinical development. Here, we describe the agents recently shown to improve overall survival, and those that have reached the advanced stages of development in Phase 3 clinical trials. We will also propose a strategy for optimal sequencing of these agents in the treatment of mCRPC. Topics: Androstenes; Androstenols; Anilides; Antibodies, Monoclonal; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Disease-Free Survival; Humans; Imidazoles; Ipilimumab; Male; Naphthalenes; Nitriles; Phenylthiohydantoin; Prostatic Neoplasms, Castration-Resistant; Pyridines; Quinolines; Quinolones; Radioisotopes; Radium; Taxoids; Thionucleotides; Tissue Extracts | 2013 |