orphenadrine has been researched along with chloramphenicol in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (16.67) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 3 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bailey, AM; Paulsen, IT; Piddock, LJ | 1 |
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Ekins, S; Ring, BJ; VandenBranden, M; Wrighton, SA | 1 |
1 review(s) available for orphenadrine and chloramphenicol
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
5 other study(ies) available for orphenadrine and chloramphenicol
Article | Year |
---|---|
RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine.
Topics: Anti-Bacterial Agents; Antipsychotic Agents; Bacterial Proteins; Base Sequence; Chlorpromazine; DNA Primers; DNA, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Synergism; Ethidium; Gene Expression; Genes, Bacterial; Humans; Membrane Transport Proteins; Multidrug Resistance-Associated Proteins; Mutation; Oligonucleotide Array Sequence Analysis; Phenothiazines; Salmonella typhimurium; Trans-Activators | 2008 |
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
Examination of purported probes of human CYP2B6.
Topics: Aryl Hydrocarbon Hydroxylases; B-Lymphocytes; Benzoflavones; Blotting, Western; Cell Line; Chloramphenicol; Chromatography, High Pressure Liquid; Coumarins; Cytochrome P-450 CYP2B6; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Ditiocarb; Humans; In Vitro Techniques; Kinetics; Microsomes; Microsomes, Liver; Molecular Probes; Orphenadrine; Oxidoreductases, N-Demethylating; Substrate Specificity | 1997 |