ornithine-phenylacetate has been researched along with phenyl-acetate* in 2 studies
2 other study(ies) available for ornithine-phenylacetate and phenyl-acetate
Article | Year |
---|---|
Safety, tolerability, and pharmacokinetics of l-ornithine phenylacetate in patients with acute liver injury/failure and hyperammonemia.
Cerebral edema remains a significant cause of morbidity and mortality in patients with acute liver failure (ALF) and has been linked to elevated blood ammonia levels. l-ornithine phenylacetate (OPA) may decrease ammonia by promoting its renal excretion as phenylacetylglutamine (PAGN), decreasing the risk of cerebral edema. We evaluated the safety, tolerability, and pharmacokinetics of OPA in patients with ALF and acute liver injury (ALI), including those with renal failure. Forty-seven patients with ALI/ALF and ammonia ≥60 μM were enrolled. Patients received OPA in a dose escalation scheme from 3.3 g every 24 hours to 10 g every 24 hours; 15 patients received 20 g every 24 hours throughout the infusion for up to 120 hours. Plasma phenylacetate (PA) concentrations were uniformly below target (<75 μg/mL) in those receiving 3.3 g every 24 hours (median [interquartile range] 5.0 [5.0] μg/mL), and increased to target levels in all but one who received 20 g every 24 hours (150 [100] μg/mL). Plasma [PAGN] increased, and conversion of PA to PAGN became saturated, with increasing OPA dose. Urinary PAGN clearance and creatinine clearance were linearly related (r = 0.831, P < 0.0001). Mean ammonia concentrations based on the area under the curve decreased to a greater extent in patients who received 20 g of OPA every 24 hours compared with those who received the maximal dose of 3.3 or 6.7 g every 24 hours (P = 0.046 and 0.022, respectively). Of the reported serious adverse events (AEs), which included 11 deaths, none was attributable to study medication. The only nonserious AEs possibly related to study drug were headache and nausea/vomiting.. OPA was well-tolerated in patients with ALI/ALF, and no safety signals were identified. Target [PA] was achieved at infusion rates of 20 g every 24 hours, leading to ammonia excretion in urine as PAGN in proportion to renal function. Randomized, controlled studies of high-dose OPA are needed to determine its use as an ammonia-scavenging agent in patients with ALF. (Hepatology 2018;67:1003-1013). Topics: Acetates; Adolescent; Adult; Aged; Ammonia; Female; Glutamine; Humans; Hyperammonemia; Kidney Function Tests; Liver; Liver Failure, Acute; Male; Middle Aged; Ornithine; Phenols; Registries; Treatment Outcome; Young Adult | 2018 |
Interorgan metabolism of ornithine phenylacetate (OP)--a novel strategy for treatment of hyperammonemia.
Combined administration of ornithine and phenylacetate (OP) is proposed as a novel treatment of hyperammonemia and hepatic encephalopathy. Ornithine is believed to increase ammonia fixation into glutamine in muscle tissue and glutamine is subsequently thought to react with phenylacetate forming phenylacetylglutamine (PAGN) which is excreted in urine. The aim of the present study was to elucidate the interorgan metabolism of ornithine and ammonia in cirrhotic rats treated with OP in order to obtain an understanding of the underlying mechanisms of the beneficial effect of the treatment, which are largely unknown. Bile duct ligated cirrhotic rats and SHAM rats were treated with OP or saline for five days. [2,5-(15)N]Ornithine or (15)NH(4)(+) were administered intravenously and the incorporation of (15)N in amino acids as well as the content of the amino acids were subsequently determined in plasma, skeletal muscle, liver and kidney. In BDL rats, OP treatment reduced arterial ammonia concentration and increased that of glutamine 30 min after the treatment but not after 15 h. OP treatment did not increase (15)N labeling in glutamine from [2,5-(15)N]ornithine and (15)NH(4)(+) in skeletal muscle or liver. However, the extent of glutamine labeling from [2,5-(15)N]ornithine or (15)NH(4)(+) was similar in arterial blood and liver and higher than that in skeletal muscle. These findings suggest that the effect of OP was related to hepatic metabolism of ornithine. PAGN could not be detected in urine or blood in any of the rats which may explain why OP treatment only reduced arterial ammonia transiently. Topics: Acetates; Ammonia; Animals; Arteries; Bile Ducts; Drug Interactions; Female; Glutamine; Hyperammonemia; Kidney; Ligation; Liver; Liver Cirrhosis, Biliary; Muscle, Skeletal; Nitrogen Isotopes; Ornithine; Phenols; Rats; Rats, Wistar; Tissue Distribution | 2013 |