orlistat has been researched along with glyceryl-2-arachidonate* in 15 studies
1 review(s) available for orlistat and glyceryl-2-arachidonate
Article | Year |
---|---|
The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications.
Topics: Amides; Amidohydrolases; Amines; Animals; Arachidonic Acids; Binding Sites; Cannabinoid Receptor Modulators; Drug Design; Endocannabinoids; Esters; Ethers; Glycerides; Humans; Ligands; Monoacylglycerol Lipases; Polyunsaturated Alkamides; Receptors, Cannabinoid | 2005 |
14 other study(ies) available for orlistat and glyceryl-2-arachidonate
Article | Year |
---|---|
Angiotensin II-Induced Cardiac Effects Are Modulated by Endocannabinoid-Mediated CB
Angiotensin II (Ang II) has various cardiac effects and causes vasoconstriction. Ang II activates the type-1 angiotensin receptor-G Topics: Angiotensin II; Animals; Arachidonic Acids; Coronary Circulation; Endocannabinoids; Glycerides; Heart; Lipoprotein Lipase; Male; Myocardial Contraction; Orlistat; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1 | 2021 |
Are the persistent effects of "gate control" stimulation on nociception a form of generalization of habituation that is endocannabinoid-dependent?
Repetitive activation of non-nociceptive afferents is known to attenuate nociceptive signaling. However, the functional details of how this modulatory process operates are not understood and this has been a barrier in using such stimuli to effectively treat chronic pain. The present study tests the hypothesis that the ability of repeated non-nociceptive stimuli to reduce nociception is a form of generalized habituation from the non-nociceptive stimulus-response pathway to the nociceptive pathway. Habituation training, using non-nociceptive mechanosensory stimuli, did reduce responses to nociceptive thermal stimulation. This generalization of habituation to nociceptive stimuli required endocannabinoid-mediated neuromodulation, although disrupting of endocannabinoid signaling did not affect "direct" habituation of to the non-nociceptive stimulus. Surprisingly, the reduced response to nociceptive stimuli following habituation training was very long-lasting (3-8 days). This long-term habituation required endocannabinoid signaling during the training/acquisition phase, but endocannabinoids were not required for post-training retention phase. The implications of these results are that applying principles of habituation learning could potentially improve anti-nociceptive therapies utilizing repeated non-nociceptive stimulation such as transcutaneous nerve stimulation (TENS), spinal cord stimulation (SCS), or electro-acupuncture. Topics: Anilides; Animals; Arachidonic Acids; Cinnamates; Endocannabinoids; Enzyme Inhibitors; Generalization, Psychological; Glycerides; Habituation, Psychophysiologic; Leeches; Nociception; Orlistat; Physical Stimulation; TRPA1 Cation Channel | 2018 |
Endocannabinoid-mediated modulation of Gq/11 protein-coupled receptor signaling-induced vasoconstriction and hypertension.
Activation of G protein-coupled receptors (GPCRs) can induce vasoconstriction via calcium signal-mediated and Rho-dependent pathways. Earlier reports have shown that diacylglycerol produced during calcium signal generation can be converted to an endocannabinoid, 2-arachidonoylglycerol (2-AG). Our aim was to provide evidence that GPCR signaling-induced 2-AG production and activation of vascular type1 cannabinoid receptors (CB1R) is capable of reducing agonist-induced vasoconstriction and hypertension. Rat and mouse aortic rings were examined by myography. Vascular expression of CB1R was demonstrated with immunohistochemistry. Rat aortic vascular smooth muscle cells (VSMCs) were cultured for calcium measurements and 2-AG-determination. Inhibition or genetic loss of CB1Rs enhanced vasoconstriction induced by angiotensin II (AngII) or phenylephrine (Phe), but not by prostaglandin(PG)F2α. AngII-induced vasoconstriction was augmented by inhibition of diacylglycerol lipase (tetrahydrolipstatin) and was attenuated by inhibition of monoacylglycerol lipase (JZL184) suggesting a functionally relevant role for endogenously produced 2-AG. In Gαq/11-deficient mice vasoconstriction was absent to AngII or Phe, which activate Gq/11-coupled receptors, but was maintained in response to PGF2α. In VSMCs, AngII-stimulated 2-AG-formation was inhibited by tetrahydrolipstatin and potentiated by JZL184. CB1R inhibition increased the sustained phase of AngII-induced calcium signal. Pharmacological or genetic loss of CB1R function augmented AngII-induced blood pressure rise in mice. These data demonstrate that vasoconstrictor effect of GPCR agonists is attenuated via Gq/11-mediated vascular endocannabinoid formation. Agonist-induced endocannabinoid-mediated CB1R activation is a significant physiological modulator of vascular tone. Thus, the selective modulation of GPCR signaling-induced endocannabinoid release has a therapeutic potential in case of increased vascular tone and hypertension. Topics: Angiotensin II; Animals; Aorta; Arachidonic Acids; Benzodioxoles; Calcium; Calcium Signaling; Dinoprost; Endocannabinoids; Gene Expression Regulation; Glycerides; GTP-Binding Protein alpha Subunits, Gq-G11; Hypertension; Lactones; Lipoprotein Lipase; Male; Mice; Mice, Knockout; Monoacylglycerol Lipases; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Orlistat; Phenylephrine; Piperidines; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Tissue Culture Techniques; Vasoconstriction | 2015 |
Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation.
Endocannabinoids are a family of lipid mediators involved in the regulation of gastrointestinal (GI) motility. The expression, localization and function of their biosynthetic enzymes in the GI tract are not well understood. Here, we examined the expression, localization and function of the enzyme diacylglycerol lipase-α (DAGLα), which is involved in biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG).. Cannabinoid CB1 receptor-deficient, wild-type control and C3H/HeJ mice, a genetically constipated strain, were used. The distribution of DAGLα in the enteric nervous system was examined by immunohistochemistry. Effects of the DAGL inhibitors, orlistat and OMDM-188 on pharmacologically induced GI hypomotility were assessed by measuring intestinal contractility in vitro and whole gut transit or faecal output in vivo. Endocannabinoid levels were measured by mass spectrometry.. DAGLα was expressed throughout the GI tract. In the intestine, unlike DAGLβ, DAGLα immunoreactivity was prominently expressed in the enteric nervous system. In the myenteric plexus, it was colocalized with the vesicular acetylcholine transporter in cholinergic nerves. In normal mice, inhibiting DAGL reversed both pharmacologically reduced intestinal contractility and pharmacologically prolonged whole gut transit. Moreover, inhibiting DAGL normalized faecal output in constipated C3H/HeJ mice. In colons incubated with scopolamine, 2-AG was elevated while inhibiting DAGL normalized 2-AG levels.. DAGLα was expressed in the enteric nervous system of mice and its inhibition reversed slowed GI motility, intestinal contractility and constipation through 2-AG and CB1 receptor-mediated mechanisms. Our data suggest that DAGLα inhibitors may be promising candidates for the treatment of constipation. Topics: Animals; Arachidonic Acids; Constipation; Endocannabinoids; Gastrointestinal Motility; Glycerides; Isoleucine; Lactones; Lipoprotein Lipase; Male; Mass Spectrometry; Mice; Mice, Inbred C3H; Mice, Inbred C57BL; Orlistat; Receptor, Cannabinoid, CB1; Scopolamine | 2015 |
Fasting stimulates 2-AG biosynthesis in the small intestine: role of cholinergic pathways.
The endocannabinoids are lipid-derived signaling molecules that control feeding and energy balance by activating CB1-type cannabinoid receptors in the brain and peripheral tissues. Previous studies have shown that oral exposure to dietary fat stimulates endocannabinoid signaling in the rat small intestine, which provides positive feedback that drives further food intake and preference for fat-rich foods. We now describe an unexpectedly broader role for cholinergic signaling of the vagus nerve in the production of the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), in the small intestine. We show that food deprivation increases levels of 2-AG and its lipid precursor, 1,2-diacylglycerol, in rat jejunum mucosa in a time-dependent manner. This response is abrogated by surgical resection of the vagus nerve or pharmacological blockade of small intestinal subtype-3 muscarinic acetylcholine (m3 mAch) receptors, but not inhibition of subtype-1 muscarinic acetylcholine (m1 mAch). We further show that blockade of peripheral CB1 receptors or intestinal m3 mAch receptors inhibits refeeding in fasted rats. The results suggest that food deprivation stimulates 2-AG-dependent CB1 receptor activation through a mechanism that requires efferent vagal activation of m3 mAch receptors in the jejunum, which, in turn, may promote feeding after a fast. Topics: Animals; Arachidonic Acids; Atropine; Endocannabinoids; Enzyme Inhibitors; Food Deprivation; Glycerides; Jejunum; Lactones; Male; Morpholines; Orlistat; Parasympatholytics; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1 | 2015 |
Analysis of ECs and related compounds in plasma: artifactual isomerization and ex vivo enzymatic generation of 2-MGs.
The analysis of peripheral endocannabinoids (ECs) is a good biomarker of the EC system. Their concentrations, from clinical studies, strongly depend on sample collection and time processing conditions taking place in clinical and laboratory settings. The analysis of 2-monoacylglycerols (MGs) (i.e., 2-arachidonoylglycerol or 2-oleoylglycerol) is a particularly challenging issue because of their ex vivo formation and chemical isomerization that occur after blood sample collection. We provide evidence that their ex vivo formation can be minimized by adding Orlistat, an enzymatic lipase inhibitor, to plasma. Taking into consideration the low cost of Orlistat, we recommend its addition to plasma collecting tubes while maintaining sample cold chain until storage. We have validated a method for the determination of the EC profile of a range of MGs and N-acylethanolamides in plasma that preserves the original isomer ratio of MGs. Nevertheless, the chemical isomerization of 2-MGs can only be avoided by an immediate processing and analysis of samples due to their instability during conservation. We believe that this new methodology can aid in the harmonization of the measurement of ECs and related compounds in clinical samples. Topics: Arachidonic Acids; Artifacts; Blood Chemical Analysis; Drug Stability; Endocannabinoids; Female; Glycerides; Humans; Isomerism; Lactones; Lipase; Male; Orlistat; Reproducibility of Results | 2014 |
Nonnociceptive afferent activity depresses nocifensive behavior and nociceptive synapses via an endocannabinoid-dependent mechanism.
Previously, low-frequency stimulation (LFS) of a nonnociceptive touch-sensitive neuron has been found to elicit endocannabinoid-dependent long-term depression (eCB-LTD) in nociceptive synapses in the leech central nervous system (CNS) that requires activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor by postsynaptically synthesized 2-arachidonoyl glycerol (2-AG). This capacity of nonnociceptive afferent activity to reduce nociceptive signaling resembles gate control of pain, albeit longer lasting in these synaptic experiments. Since eCB-LTD has been observed at a single sensory-motor synapse, this study examines the functional relevance of this mechanism, specifically whether this form of synaptic plasticity has similar effects at the behavioral level in which additional, intersegmental neural circuits are engaged. Experiments were carried out using a semi-intact preparation that permitted both synaptic recordings and monitoring of the leech whole body shortening, a defensive withdrawal reflex that was elicited via intracellular stimulation of a single nociceptive neuron (the N cell). The same LFS of a nonnociceptive afferent that induced eCB-LTD in single synapses also produced an attenuation of the shortening reflex. Similar attenuation of behavior was also observed when 2-AG was applied. LFS-induced behavioral and synaptic depression was blocked by tetrahydrolipstatin (THL), a diacylglycerol lipase inhibitor, and by SB366791, a TRPV1 antagonist. The effects of both THL and SB366791 were observed following either bath application of the drug or intracellular injection into the presynaptic (SB366791) or postsynaptic (THL) neuron. These findings demonstrate a novel, endocannabinoid-based mechanism by which nonnociceptive afferent activity may modulate nocifensive behaviors via action on primary afferent synapses. Topics: Anilides; Animals; Arachidonic Acids; Cannabinoid Receptor Agonists; Cinnamates; Endocannabinoids; Enzyme Inhibitors; Glycerides; Lactones; Leeches; Long-Term Synaptic Depression; Neurons, Afferent; Nociception; Orlistat; Reflex; Synapses; TRPV Cation Channels | 2013 |
Gating the polarity of endocannabinoid-mediated synaptic plasticity by nitric oxide in the spinal locomotor network.
The final motor output underlying behavior arises from an appropriate balance between excitation and inhibition within neural networks. Retrograde signaling by endocannabinoids adapts synaptic strengths and the global activity of neural networks. In the spinal cord, endocannabinoids are mobilized postsynaptically from network neurons and act retrogradely on presynaptic cannabinoid receptors to potentiate the locomotor frequency. However, it is still unclear whether mechanisms exist within the locomotor networks that determine the sign of the modulation by cannabinoid receptors to differentially regulate excitation and inhibition. In this study, using the lamprey spinal cord in vitro, we first report that 2-AG (2-arachidonyl glycerol) is mobilized by network neurons and underlies a form of modulation that is embedded within the locomotor networks. We then show that the polarity of the endocannabinoid modulation is gated by nitric oxide to enable simultaneously potentiation of excitation and depression of inhibition within the spinal locomotor networks. Our results suggest that endocannabinoid and nitric oxide systems interact to mediate inversion of the polarity of synaptic plasticity within the locomotor networks. Thus, endocannabinoid and nitric oxide shift in the excitation-inhibition balance to set the excitability of the spinal locomotor network. Topics: Animals; Arachidonic Acids; Benzodioxoles; Cannabinoid Receptor Modulators; Endocannabinoids; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Female; Glycerides; Lactones; Lampreys; Locomotion; Male; N-Methylaspartate; Nerve Net; Neuronal Plasticity; Neurotransmitter Agents; Nitric Oxide; Orlistat; Patch-Clamp Techniques; Piperidines; Receptor, Cannabinoid, CB1; Spinal Cord; Synaptic Transmission | 2012 |
Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition.
Orexin A and B are hypothalamic peptides known to modulate arousal, feeding, and reward via OX1 and OX2 receptors. Orexins are also antinociceptive in the brain, but their mechanism(s) of action remain unclear. Here, we investigated the antinociceptive mechanism of orexin A in the rat ventrolateral periaqueductal gray (vlPAG), a midbrain region crucial for initiating descending pain inhibition. In vlPAG slices, orexin A (30-300 nm) depressed GABAergic evoked IPSCs. This effect was blocked by an OX1 [1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea (SB 334867)], but not OX2 [N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (compound 29)], antagonist. Orexin A increased the paired-pulse ratio of paired IPSCs and decreased the frequency, but not amplitude, of miniature IPSCs. Orexin A-induced IPSC depression was mimicked by (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN 55,212-2), a cannabinoid 1 (CB1) receptor agonist. 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide (AM 251), a CB1 antagonist, reversed depressant effects by both agonists. Orexin A-induced IPSC depression was prevented by 1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and tetrahydrolipstatin, inhibitors of phospholipase C (PLC) and diacylglycerol lipase (DAGL), respectively, and enhanced by cyclohexyl[1,1'-biphenyl]-3-ylcarbamate (URB602), which inhibits enzymatic degradation of 2-arachidonoylglycerol (2-AG). Moderate DAGLα, but not DAGLβ, immunoreactivity was observed in the vlPAG. Orexin A produced an overall excitatory effect on evoked postsynaptic potentials and hence increased vlPAG neuronal activity. Intra-vlPAG microinjection of orexin A reduced hot-plate nociceptive responses in rats in a manner blocked by SB 334867 and AM 251. Therefore, orexin A may produce antinociception by activating postsynaptic OX1 receptors, stimulating synthesis of 2-AG, an endocannabinoid, through a Gq-protein-mediated PLC-DAGLα enzymatic cascade culminating in retrograde inhibition of GABA release (disinhibition) in the vlPAG. Topics: Analysis of Variance; Animals; Animals, Newborn; Arachidonic Acids; Benzoxazines; Benzoxazoles; Biphenyl Compounds; Calcium Channel Blockers; Cannabinoid Receptor Modulators; Disease Models, Animal; Electric Stimulation; Endocannabinoids; Enzyme Inhibitors; Estrenes; gamma-Aminobutyric Acid; Glycerides; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Intracellular Signaling Peptides and Proteins; Lactones; Male; Morpholines; Naphthalenes; Naphthyridines; Neural Inhibition; Neural Pathways; Neuropeptides; Orexin Receptors; Orexins; Orlistat; Pain; Pain Measurement; Patch-Clamp Techniques; Periaqueductal Gray; Piperidines; Pyrazoles; Pyrrolidinones; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Urea | 2011 |
Depolarizing GABAergic synaptic input triggers endocannabinoid-mediated retrograde synaptic signaling.
Endocannabinoids released by postsynaptic neurons inhibit neurotransmitter release from presynaptic axon terminals. One typical stimulus of endocannabinoid production is an increase of calcium concentration in postsynaptic neurons. The aim of the present study was to clarify whether depolarizing GABAergic synaptic input, by increasing calcium concentration in postsynaptic neurons, can trigger endocannabinoid production. Spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) were recorded in Purkinje cells in mouse cerebellar slices with patch-clamp pipettes containing 151 mM chloride (a usual recording mode). sIPSCs were depolarizing inward currents under this condition. Combined electrophysiological and fluorometric calcium imaging experiments indicated that sIPSCs frequently triggered calcium spikes. After the calcium spikes, a short-term suppression of sIPSCs occurred. This suppression was prevented by the CB(1) cannabinoid receptor antagonist rimonabant and the diacylglycerol lipase inhibitor orlistat, but not changed by URB597, an inhibitor of anandamide degradation. It is, therefore, likely that CB(1) receptors and 2-arachidonoylglycerol were involved. For testing the physiological significance of the above observation, we carried out experiments on brains of 3- to 5-day-old mice. The gramicidin-induced perforated patch-clamp mode was used for preserving the physiological intracellular chloride concentration of the neurons. Depolarizing GABAergic sIPSCs occurred under this condition, but at a very low rate. Rimonabant did not change the frequency of these sIPSCs, arguing against the persistence of an endocannabinoid tone. The results point to a new kind of trigger of endocannabinoid production: depolarizing GABAergic synaptic input can elicit endocannabinoid production in postsynaptic neurons by activating calcium channels. The produced endocannabinoid suppresses GABA release from presynaptic axon terminals. Topics: Aniline Compounds; Animals; Animals, Newborn; Arachidonic Acids; Benzamides; Bicuculline; Biophysics; Calcium; Calcium Signaling; Cannabinoid Receptor Antagonists; Cannabinoid Receptor Modulators; Carbamates; Cerebellum; Electric Stimulation; Endocannabinoids; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Fluoresceins; GABA Agonists; GABA Antagonists; gamma-Aminobutyric Acid; Glycerides; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Lactones; Mice; Muscimol; Orlistat; Patch-Clamp Techniques; Piperidines; Purkinje Cells; Pyrazoles; Quinoxalines; Rimonabant; Signal Transduction; Synapses; Valine | 2009 |
Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling.
The endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated as a key retrograde mediator in the nervous system based on pharmacological studies using inhibitors of the 2-AG biosynthetic enzymes diacyglycerol lipase alpha and beta (DAGL-alpha/beta). Here, we show by competitive activity-based protein profiling that the DAGL-alpha/beta inhibitors, tetrahydrolipstatin (THL) and RHC80267, block several brain serine hydrolases with potencies equal to or greater than their inhibitory activity against DAGL enzymes. Interestingly, a minimal overlap in target profiles was observed for THL and RHC80267, suggesting that pharmacological effects observed with both agents may be viewed as good initial evidence for DAGL-dependent events. Topics: Arachidonic Acids; Brain; Cannabinoid Receptor Modulators; Cyclohexanones; Endocannabinoids; Glycerides; Humans; Isoenzymes; Lactones; Lipase; Molecular Structure; Orlistat; Receptor, Cannabinoid, CB1; Serine Proteinase Inhibitors | 2008 |
Tetrahydrolipstatin analogues as modulators of endocannabinoid 2-arachidonoylglycerol metabolism.
A series of 21 analogues of tetrahydrolipstatin (THL, 1) were synthesized and tested as inhibitors of the formation or hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Three of the novel compounds, i.e., 11, 13, and 15, inhibited 2-AG formation via the diacylglycerol lipase alpha (DAGLalpha) with IC 50 values lower than 50 nM (IC 50 of THL = 1 microM) and were between 23- and 375-fold selective vs 2-AG hydrolysis by monoacylglycerol lipase (MAGL) as well as vs cannabinoid CB 1 and CB 2 receptors and anandamide hydrolysis by fatty acid amide hydrolase (FAAH). Three other THL analogues, i.e., 14, 16, and 18, were slightly more potent than THL against DAGLalpha and appreciably selective vs MAGL, CB receptors, and FAAH (15-26-fold). One compound, i.e., 8, was a potent inhibitor of MAGL-like activity (IC 50 = 0.41 microM), and relatively ( approximately 7-fold) selective vs the other targets tested. Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cell Line, Tumor; Endocannabinoids; Glycerides; Inhibitory Concentration 50; Lactones; Mice; Molecular Structure; Orlistat; Structure-Activity Relationship | 2008 |
A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol.
Endogenous ligands for cannabinoid receptors ("endocannabinoids") include the lipid transmitters anandamide and 2-arachidonoylglycerol (2-AG). Endocannabinoids modulate a diverse set of physiological processes and are tightly regulated by enzymatic biosynthesis and degradation. Termination of anandamide signaling by fatty acid amide hydrolase (FAAH) is well characterized, but less is known about the inactivation of 2-AG, which can be hydrolyzed by multiple enzymes in vitro, including FAAH and monoacylglycerol lipase (MAGL). Here, we have taken a functional proteomic approach to comprehensively map 2-AG hydrolases in the mouse brain. Our data reveal that approximately 85% of brain 2-AG hydrolase activity can be ascribed to MAGL, and that the remaining 15% is mostly catalyzed by two uncharacterized enzymes, ABHD6 and ABHD12. Interestingly, MAGL, ABHD6, and ABHD12 display distinct subcellular distributions, suggesting that they may control different pools of 2-AG in the nervous system. Topics: Animals; Arachidonic Acids; Benzamides; Biotin; Brain; Carbamates; Catalysis; Chlorocebus aethiops; COS Cells; Endocannabinoids; Enzyme Inhibitors; Glycerides; Hydrolases; Lactones; Membrane Proteins; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Organophosphorus Compounds; Orlistat; Proteomics; Subcellular Fractions; Transfection | 2007 |
Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain.
Diacylglycerol (DAG) lipase activity is required for axonal growth during development and for retrograde synaptic signaling at mature synapses. This enzyme synthesizes the endocannabinoid 2-arachidonoyl-glycerol (2-AG), and the CB1 cannabinoid receptor is also required for the above responses. We now report on the cloning and enzymatic characterization of the first specific sn-1 DAG lipases. Two closely related genes have been identified and their expression in cells correlated with 2-AG biosynthesis and release. The expression of both enzymes changes from axonal tracts in the embryo to dendritic fields in the adult, and this correlates with the developmental change in requirement for 2-AG synthesis from the pre- to the postsynaptic compartment. This switch provides a possible explanation for a fundamental change in endocannabinoid function during brain development. Identification of these enzymes may offer new therapeutic opportunities for a wide range of disorders. Topics: Animals; Arachidonic Acids; Brain; Cannabinoid Receptor Modulators; Cell Differentiation; Cloning, Molecular; COS Cells; Dendrites; DNA, Complementary; Endocannabinoids; Enzyme Inhibitors; Glycerides; Growth Substances; Humans; Lipoprotein Lipase; Mice; Molecular Sequence Data; Neurites; Presynaptic Terminals; Protein Structure, Tertiary; Rats; Sequence Homology, Amino Acid; Sequence Homology, Nucleic Acid; Signal Transduction; Synaptic Membranes; Time Factors | 2003 |