orlistat has been researched along with 1-6-bis(cyclohexyloximinocarbonyl)hexane* in 3 studies
3 other study(ies) available for orlistat and 1-6-bis(cyclohexyloximinocarbonyl)hexane
Article | Year |
---|---|
Molecular characterization and identification of surrogate substrates for diacylglycerol lipase α.
Diacylglycerol lipase α is the key enzyme in the formation of the most prevalent endocannabinoid, 2-arachidonoylglycerol in the brain. In this study we identified the catalytic triad of diacylglycerol lipase α, consisting of serine 472, aspartate 524 and histidine 650. A truncated version of diacylglycerol lipase α, spanning residues 1-687 retains complete catalytic activity suggesting that the C-terminal domain is not required for catalysis. We also report the discovery and the characterization of fluorogenic and chromogenic substrates for diacylglycerol lipase α. Assays performed with these substrates demonstrate equipotent inhibition of diacylglycerol lipase α by tetrahydrolipastatin and RHC-20867 as compared to reactions performed with the native diacylglycerol substrate. Thus, confirming the utility of assays using these substrates for identification and kinetic characterization of inhibitors from pharmaceutical collections. Topics: Catalysis; Cell Membrane; Chromogenic Compounds; Cyclohexanones; Fluorescence; HEK293 Cells; Humans; Lactones; Lipoprotein Lipase; Mutation; Orlistat; Substrate Specificity | 2011 |
Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling.
The endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated as a key retrograde mediator in the nervous system based on pharmacological studies using inhibitors of the 2-AG biosynthetic enzymes diacyglycerol lipase alpha and beta (DAGL-alpha/beta). Here, we show by competitive activity-based protein profiling that the DAGL-alpha/beta inhibitors, tetrahydrolipstatin (THL) and RHC80267, block several brain serine hydrolases with potencies equal to or greater than their inhibitory activity against DAGL enzymes. Interestingly, a minimal overlap in target profiles was observed for THL and RHC80267, suggesting that pharmacological effects observed with both agents may be viewed as good initial evidence for DAGL-dependent events. Topics: Arachidonic Acids; Brain; Cannabinoid Receptor Modulators; Cyclohexanones; Endocannabinoids; Glycerides; Humans; Isoenzymes; Lactones; Lipase; Molecular Structure; Orlistat; Receptor, Cannabinoid, CB1; Serine Proteinase Inhibitors | 2008 |
Metabolism of a long-chain diacylglycerol by permeabilized A10 smooth muscle cells.
The regulatory effects of diacylglycerol (DAG) second messengers will be terminated by metabolism. A long-chain DAG, 1-palmitoyl-2-[1-14C]oleoyl-sn-glycerol (2-[14C]POG), was metabolized by cultured A10 smooth muscle cells after permeabilization by preincubation with 340 U/ml alpha-toxin from Staphylococcus aureus. In contrast to results with the cell-permeable DAG analogue, dioctanoyl-glycerol ([3H]diC8), no appreciable 2-[14C]POG degradation could be detected in control A10 cells not treated with alpha-toxin. With permeabilized A10 cells, 2-[14C]POG was mainly converted into lipolytic products of a lipase pathway, monoacylglycerol (MG) and fatty acid (FA); very little radioactivity was incorporated into triacylglycerol (TG) or phospholipid (PL) via reactions catalyzed by either DAG acyltransferase, cholinephosphotransferase, or DAG kinase. Similar results were obtained in experiments with 1-stearoyl-2-[1-14C]arachidonoyl-sn-glycerol. The conversion of 2-[14C]POG into PL and TG was not enhanced by the addition of 1 mM ATP-MgCl2, 1 mM CDP-choline, or 1 mM oleoyl-CoA to the alpha-toxin-treated A10 cells. The formation of FA and MG by permeabilized A10 cells was inhibited by DAG lipase inhibitors, U-57,908 (50 microM) and tetrahydrolipstatin (1-25 nM). The predominant contribution of the lipase pathway to the metabolism of a long-chain DAG, 2-[14C]POG, by alpha-toxin-treated A10 cells is similar to results for the degradation of [3H]diC8 by intact A10 cells. Topics: Animals; Cell Line; Cell Membrane Permeability; Cyclohexanones; Diglycerides; Lactones; Lipoprotein Lipase; Muscle, Smooth, Vascular; Orlistat | 1993 |