orientin and luteolin-7-glucoside

orientin has been researched along with luteolin-7-glucoside* in 3 studies

Reviews

1 review(s) available for orientin and luteolin-7-glucoside

ArticleYear
Recent Trends in the Application of Chromatographic Techniques in the Analysis of Luteolin and Its Derivatives.
    Biomolecules, 2019, 11-12, Volume: 9, Issue:11

    Luteolin is a flavonoid often found in various medicinal plants that exhibits multiple biological effects such as antioxidant, anti-inflammatory and immunomodulatory activity. Commercially available medicinal plants and their preparations containing luteolin are often used in the treatment of hypertension, inflammatory diseases, and even cancer. However, to establish the quality of such preparations, appropriate analytical methods should be used. Therefore, the present paper provides the first comprehensive review of the current analytical methods that were developed and validated for the quantitative determination of luteolin and its C- and O-derivatives including orientin, isoorientin, luteolin 7-O-glucoside and others. It provides a systematic overview of chromatographic analytical techniques including thin layer chromatography (TLC), high performance thin layer chromatography (HPTLC), liquid chromatography (LC), high performance liquid chromatography (HPLC), gas chromatography (GC) and counter-current chromatography (CCC), as well as the conditions used in the determination of luteolin and its derivatives in plant material.

    Topics: Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Flavones; Flavonoids; Glucosides; Luteolin

2019

Other Studies

2 other study(ies) available for orientin and luteolin-7-glucoside

ArticleYear
Development and Validation of RP-HPLC Method for Vicenin-2, Orientin, Cynaroside, Betulinic Acid, Genistein, and Major Eight Bioactive Constituents with LC-ESI-MS/MS Profiling in Ocimum Genus.
    Journal of AOAC International, 2021, Dec-11, Volume: 104, Issue:6

    Ocimum genus, known as Tulsi or Basil, is a prominent botanical class in Asian culture, especially in India. The leaves have immunomodulatory, antioxidant, stress-relieving, and adaptogenic roles in traditional and modern medicine, with prominent usage in herbal teas and nutraceuticals.. An high-performance liquid chromatography-photodiode array (HPLC-PDA) method was developed and validated for quantification of vicenin-2, orientin, cynaroside, betulinic acid, genistein with syringic acid, rosmarinic acid, eugenol, carnosic acid, oleanolic acid, ursolic acid, luteolin, and apigenin and was confirmed using a novel electrospray ionisation-mass spectrometry (ESI-MS/MS) method in the Ocimum genus samples.. The methodology parameters were developed on an reverse phase (RP) C18 column with a gradient elution of 1 mL/min flow rate for 0.1% o-phosphoric acid and acetonitrile at 210 and 340 nm wavelengths.. The validation data for 13 bioactive compounds showed good linearity (r2 > 0.99) with sensitive LOD (0.034-0.684 µg/mL) and LOQ (0.100-2.068 µg/mL) with recoveries (83.66-101.53%). The results of the quantification were found to be precise (RSD, <5.0%) and accurate (relative error (RE), -0.60-1.06). The method performance was verified by analyzing 10 samples of O. tenuiflorum from the 10 geographical states of India (RSD, <5.0%) and were found to be robust. This HPLC-PDA method with ESI-MS/MS confirmation was applicable to the 13 cultivars from O. thyrsiflorum, O. citriodorum, O. americanum, O. africanum, O. basilicum, O. gratissimum, and O. tenuiflorum species.. The validated HPLC-PDA and LC-ESI-MS/MS method was found to be selective and suitable for analyzing 13 compounds in O. tenuiflorum and 12 cultivars from the Ocimum genus as a quality control tool. This method can be used in routine analysis as an inexpensive alternative to advanced techniques.. This work is the first to report for vicenin-2, orientin, cynaroside, betulinic acid, and genistein, with simultaneous analysis of eight bioactive compounds in the Ocimum genus.

    Topics: Apigenin; Betulinic Acid; Chromatography, High Pressure Liquid; Flavonoids; Genistein; Glucosides; Luteolin; Ocimum; Ocimum basilicum; Pentacyclic Triterpenes; Plant Extracts; Tandem Mass Spectrometry

2021
Glycosyl flavones from Humulus japonicus suppress MMP-1 production via decreasing oxidative stress in UVB irradiated human dermal fibroblasts.
    BMB reports, 2020, Volume: 53, Issue:7

    Exposure to Ultraviolet (UV) light induces photoaging of skin, leading to wrinkles and sunburn. The perennial herb Humulus japonicus, widely distributed in Asia, is known to have antiinflammatory, antimicrobial, and antioxidant effects. However, the physiological activities of isolated compounds from H. japonicus have rarely been investigated. This study focused on the isolation of active compounds from H. japonicus and the evaluation of their effects on photoaging in UVB-irradiated human fibroblast (Hs68) cells. When the extract and four fractions of H. japonicus were treated respectively in UVB-irradiated Hs68 cells to investigate anti-photoaging effects, the ethyl acetate (EtOAc) fraction showed the strongest inhibitory effect on MMP- 1 secretion. From EtOAc fraction, we isolated luteolin-8-C-glucoside (1), apigenin-8-C-glucoside (2), and luteolin-7-O-glucoside (3). These compounds suppressed UVB-induced MMP-1 production by inhibiting the phosphorylation of the mitogen-activated protein kinases (MAPKs) and activator protein-1 (AP-1). When the antioxidant activity of the compounds were estimated by conducting western blot, calculating the bond dissociation energies of the O-H bond (BDE) at different grade, and measuring radical scavenging activity, we found luteolin-8-C-glucoside (1) showed the strongest activity on the suppression of UVB-induced photoaging. These results demonstrate the inhibitory effect of three flavone glycosides derived from H. japonicus on MMP-1 production, MAPK and AP-1 signaling, and oxidative stress; this could prove useful in suppressing UVB induced photoaging. [BMB Reports 2020; 53(7): 379-384].

    Topics: Acetates; Anti-Inflammatory Agents; Apigenin; Cell Line; Fibroblasts; Flavones; Flavonoids; Glucosides; Humans; Humulus; Matrix Metalloproteinase 1; Mitogen-Activated Protein Kinases; Oxidative Stress; Plant Extracts; Signal Transduction; Skin; Skin Aging; Transcription Factor AP-1; Ultraviolet Rays

2020