orabase has been researched along with genipin* in 2 studies
2 other study(ies) available for orabase and genipin
Article | Year |
---|---|
Composite biomaterial repair strategy to restore biomechanical function and reduce herniation risk in an ex vivo large animal model of intervertebral disc herniation with varying injury severity.
Back pain commonly arises from intervertebral disc (IVD) damage including annulus fibrosus (AF) defects and nucleus pulposus (NP) loss. Poor IVD healing motivates developing tissue engineering repair strategies. This study evaluated a composite injectable IVD biomaterial repair strategy using carboxymethylcellulose-methylcellulose (CMC-MC) and genipin-crosslinked fibrin (FibGen) that mimic NP and AF properties, respectively. Bovine ex vivo caudal IVDs were evaluated in cyclic compression-tension, torsion, and compression-to-failure tests to determine IVD biomechanical properties, height loss, and herniation risk following experimentally-induced severe herniation injury and discectomy (4 mm biopsy defect with 20% NP removed). FibGen with and without CMC-MC had failure strength similar to discectomy injury suggesting no increased risk compared to surgical procedures, yet no biomaterials improved axial or torsional biomechanical properties suggesting they were incapable of adequately restoring AF tension. FibGen had the largest failure strength and was further evaluated in additional discectomy injury models with varying AF defect types (2 mm biopsy, 4 mm cruciate, 4 mm biopsy) and NP removal volume (0%, 20%). All simulated discectomy defects significantly compromised failure strength and biomechanical properties. The 0% NP removal group had mean values of axial biomechanical properties closer to intact levels than defects with 20% NP removed but they were not statistically different and 0% NP removal also decreased failure strength. FibGen with and without CMC-MC failed at super-physiological stress levels above simulated discectomy suggesting repair with these tissue engineered biomaterials may perform better than discectomy alone, although restored biomechanical function may require additional healing with the potential application of these biomaterials as sealants and cell/drug delivery carriers. Topics: Animals; Annulus Fibrosus; Biocompatible Materials; Biomechanical Phenomena; Carboxymethylcellulose Sodium; Cattle; Cross-Linking Reagents; Disease Models, Animal; Diskectomy; Fibrin; Hydrogels; In Vitro Techniques; Injections, Spinal; Intervertebral Disc Displacement; Iridoids; Materials Testing; Methylcellulose; Nucleus Pulposus | 2019 |
Swelling behaviour and controlled drug release from cross-linked κ-carrageenan/NaCMC hydrogel by diffusion mechanism.
We studied a model system of controlled drug release using beta-carotene and κ-carrageenan/NaCMC hydrogel as a drug and a device, respectively. Different concentrations of genipin were added to crosslink the beta-carotene loaded beads by using the dripping method. Results have shown that the cross-linked beads possess lower swelling ability in all pH conditions (pH 1.2 and 7.4), and swelling ratio decreases with increasing genipin concentration. Microstructure study shows that cross-linking has enhanced the stability and structure of the beads network. Determination of diffusion coefficient for the release of encapsulated beta-carotene indicates less diffusivity when beads are cross-linked. Swelling models using adaptive neuro fuzzy show that using genipin as a cross-linker in the kC/NaCMC hydrogels affects the transport mechanism. The model shows very good agreement with the experimental data that indicates that applying ANFIS modelling is an accurate, rapid and simple way to model in such a case for controlled release applications. Topics: beta Carotene; Carboxymethylcellulose Sodium; Carrageenan; Cross-Linking Reagents; Diffusion; Drug Carriers; Drug Compounding; Drug Delivery Systems; Fuzzy Logic; Hydrogels; Iridoids; Microscopy, Electron, Scanning; Neural Networks, Computer | 2012 |