orabase and dehydroxymethylepoxyquinomicin

orabase has been researched along with dehydroxymethylepoxyquinomicin* in 2 studies

Other Studies

2 other study(ies) available for orabase and dehydroxymethylepoxyquinomicin

ArticleYear
Treatment with novel AP-1 and NF-κB inhibitors restores the colonic endocrine cells to normal levels in rats with DSS-induced colitis.
    International journal of molecular medicine, 2016, Volume: 37, Issue:3

    The aim of this study was to determine the effects of two anti-inflammatory agents on the abnormalities in colonic endocrine cells in dextran sodium sulfate (DSS)-induced colitis. Colitis was induced in male Wistar rats (n=45) using DSS; a further 15 rats without colitis were included in a healthy control group. The animals with DSS-induced colitis were randomly divided into 3 treatment groups as follows: i) DSS group, rats were treated with 0.5 ml of 0.5% carboxymethyl cellulose (CMC); ii) DSS‑G group, rats were treated with 3-[(dodecylthiocarbonyl)‑methyl]‑glutarimide (DTCM‑G), a novel activator protein 1 (AP-1) inhibitor, 20 mg/kg in CMC; and iii) DSS‑Q group, rats were treated with dehydroxymethylepoxyquinomicin, a nuclear factor κB (NF-κB) inhibitor, 15 mg/kg in CMC. The treatments were administered intraperitoneally, twice daily for 5 days, after which the animals were sacrificed and tissue samples from the colon were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), enteroglucagon, pancreatic polypeptide (PP), somatostatin, leukocytes, B/T lymphocytes, B lymphocytes, T lymphocytes, macrophages/monocytes and mast cells. The densities of these endocrine and immune cells were quantified by computer‑aided image analysis. The densities of CgA-, serotonin-, PYY- and enteroglucagon-producing cells were significantly higher, and those of PP- and somatostatin-producing cells were significantly lower in the DSS‑G, DSS‑Q and control groups than in the DSS group. The densities of all the immune cells were lower in the DSS‑G, DSS‑Q and control groups than in the DSS group. The densities of all endocrine cell types and immune cells in both the DSS groups treated with anti‑inflammatory agents were restored to control levels. In conclusion, our data demonstrate that there is an interaction between endocrine and immune cells during inflammation. This interaction with subsequent changes in endocrine cells is responsible for the clinical manifestation of colitis symptoms.

    Topics: Animals; Anti-Inflammatory Agents; Benzamides; Carboxymethylcellulose Sodium; Colitis; Colon; Cyclohexanones; Dextran Sulfate; Disease Models, Animal; Endocrine Cells; Male; NF-kappa B; Piperidones; Rats; Rats, Wistar; Transcription Factor AP-1

2016
Anti-inflammatory effects of novel AP-1 and NF-κB inhibitors in dextran-sulfate-sodium-induced colitis in rats.
    International journal of molecular medicine, 2016, Volume: 37, Issue:6

    The aim of the present study was to elucidate the anti-inflammatory effects of the two novel anti-inflammatory substances, 3-[(dodecylthiocarbonyl)‑methyl]-glutarimide (DTCM-G) and dehydroxymethylepoxyquinomicin (DHMEQ), on DSS-induced colitis in rats. For this purpose, rats with dextran sulfate sodium (DSS)-induced colitis were randomly divided into 3 groups with 10 animals in each group as follows: i) the control group, which received 0.5 ml of 0.5% carboxymethyl cellulose (CMC; vehicle), ii) rats that received DTCM-G (20 mg/kg body weight in 0.5% CMC; the DTCM-G group), and iii) rats that received DHMEQ (15 mg/kg body weight in 0.5% CMC; the DHMEQ group). The animals were sacrificed after the 5-day treatment period, and tissue samples were taken from their colons and sectioned for histological evaluation. The tissue sections were stained with hematoxylin and eosin, and immunostained for leukocytes, lymphocytes, macrophages/monocytes and mast cells. The disease activity index (DAI), histological grading of colitis, and densities of several types of submucosal immune cells were compared between the controls, and the DTCM-G and DHMEQ groups. The DAI values were significantly lower in both the DTCM-G and DHMEQ groups than in the control group. The total scores for the histological grading of colitis were also significantly lower in the DTCM-G and DHMEQ groups than in the control group. The submucosal densities of leucocytes, lymphocytes, macrophages/monocytes and mast cells were significantly lower in the DTCM-G and DHMEQ groups than in the control group. Our findings indicate that the anti-inflammatory and anticancer effects of DTCM-G and DHMEQ, and the absence of any associated toxicity render them excellent therapeutic candidates for clinical use in the treatment of colitis.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Benzamides; Carboxymethylcellulose Sodium; Colitis; Colon; Cyclohexanones; Dextran Sulfate; Gene Expression Regulation; Lymphocytes; Macrophages; Male; Mast Cells; Monocytes; NF-kappa B; Piperidones; Rats; Rats, Wistar; Signal Transduction; Transcription Factor AP-1; Treatment Outcome

2016